
Secure and Efficient Multi-variant Execution Using
Hardware-assisted Process Virtualization

Koen Koning
Vrije Universiteit Amsterdam

koen.koning@vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

Abstract—Memory error exploits rank among the most serious
security threats. Of the plethora of memory error containment
solutions proposed over the years, most have proven to be too
weak in practice. Multi-Variant eXecution (MVX) solutions can
potentially detect arbitrary memory error exploits via divergent
behavior observed in diversified program variants running in
parallel. However, none have found practical applicability in
security due to their non-trivial performance limitations.

In this paper, we present MvArmor, an MVX system that uses
hardware-assisted process virtualization to monitor variants for
divergent behavior in an efficient yet secure way. To provide com-
prehensive protection against memory error exploits, MvArmor
relies on a new MVX-aware variant generation strategy. The
system supports user-configurable security policies to tune the
performance-security trade-off. Our analysis shows that MvArmor
can counter many classes of modern attacks at the cost of modest
performance overhead, even with conservative detection policies.

I. INTRODUCTION

For more than a quarter of a century and despite a plethora
of proposed solutions, memory errors in C and C++ programs
still rank among the most serious security concerns today [1],
[2]. Even an unsophisticated memory error exploit like Heart-
bleed can easily compromise the private data of countless users
worldwide with serious consequences [3].

Modern operating systems deploy several measures to
protect against memory error exploits, but all of them can be
circumvented with varying amounts of effort. For example,
widely deployed security defenses such as data execution
prevention (DEP) [4], address space layout randomization
(ASLR) [5], and stack canaries [6] can all be bypassed by
modern code-reuse attacks [7], [8]. Stronger security defenses
proposed by the research community, either require recom-
pilation of the program and all shared libraries [9], [10],
[11], [12] (limiting deployability), or protect only against a
subset of all possible memory attacks (limiting security). As
an example, popular control-flow integrity (CFI) solutions that
protect against control-flow diversion attacks [13], [14], [15],
[16], [17] are ineffective against data-only attacks (such as
Heartbleed) and possibly even against control-flow diversion
attacks that piggyback on legal control flows in the pro-
gram [18], [19], [20], [21].

The need for defenses that protect against arbitrary attacks
has led to a scramble for more comprehensive solutions—
most notably Multi-Variant eXecution (MVX)1 [22], [23].

1Also known as N-variant or dual execution and closely related to N-version
execution.

MVX systems, first proposed by Cox et al. [23] in 2006, run
two or more memory-diversified but semantically equivalent
software variants in parallel and detect memory attacks from
semantically divergent behavior. These variants run on the
same machine (utilizing many-core CPUs) and synchronize
at the system call (syscall) level. While such systems have
been around for nearly a decade, the run-time performance
of traditional MVX implementations [24], [25], [26], [27] is
so poor—due to their costly syscall monitoring mechanisms—
to make them unusable in practice. Also, the limited variant
generation strategies in existing solutions often do not of-
fer adequate protection against more sophisticated memory
attacks. Recent MVX efforts have therefore focused either
on generating better variants so as to detect (some) modern
attacks but with no improvement in performance [26], [24], or
on improving the performance by efficient in-process imple-
mentations which are, unfortunately, not suitable for security
enforcement purposes and target reliability instead [22].

In this paper, we propose MvArmor, an MVX system
which relies on a new secure and efficient multi-variant de-
sign to counter arbitrary memory error exploits. Our design
leverages hardware-assisted process virtualization to place the
application-level MVX monitor directly in the syscall path of
each of the running variants. This approach is efficient, as it
does not incur the frequent context switches from/to external
monitoring processes required by traditional process tracing-
based MVX implementations [24], [25], [26]. Furthermore,
given that the process virtualization layer can grant the MVX
monitor access to privileged CPU features [28], our design
is particularly amenable to optimizations [29], [30]. At the
same time, this approach is secure, as it relies on hardware-
enforced protection rings to completely isolate the execution
of the MVX monitor by construction—unlike prior in-process
implementations [22]—protecting it from known and unknown
attacks. Furthermore, unlike prior implementations running
entirely in the kernel [23], our design separates the application-
level MVX monitor from the rest of the system, limiting the
trusted computing base (TCB).

To counter arbitrary attacks effectively, we complement our
MVX design with a new MVX-aware variant generation strat-
egy, which seeks to provide strong security and performance
guarantees with no manual effort. Our strategy relies on per-
variant allocator abstractions to carefully and efficiently control
the memory layout across the running variants. This strategy
provides deterministic security guarantees against arbitrary
memory error exploits when possible—or strong probabilistic
guarantees otherwise. Finally, MvArmor supports flexible secu-
rity policies tailored to different classes of modern attacks (e.g.,

1

koen.koning@vu.nl
herbertb@cs.vu.nl
giuffrida@cs.vu.nl

arbitrary code execution or information disclosure), allowing
users to tune the performance-security trade-off according to
their needs.

Summarizing, our contributions are:

• We propose an MVX design based on hardware-assisted
process virtualization. Our design efficiently separates the
execution of the MVX monitor from both the running
variants and the underlying kernel, providing a superior
performance and security design point compared to prior
efforts.

• We propose a novel variant generation strategy based
on MVX-aware allocator abstractions. Our strategy is
efficient and, when used in combination within our MVX
design, provides strong security guarantees against both
traditional and modern memory error exploits.

• We present MvArmor, a secure and efficient MVX system.
MvArmor implements our design on top of Dune [28]
to protect commodity Linux programs and offers flexible
security policies to encourage deployment. We evaluate
MvArmor with standard benchmarks and popular real-
world server programs and show that MvArmor provides
a powerful defense against arbitrary memory attacks
with much better performance than any existing security-
related MVX solution (9% overhead on SPEC CINT2006
and just 55% on average for server applications even with
the most conservative security policy).

II. BACKGROUND

Every MVX system contains two major components: a
monitor which runs and synchronizes the variants and a variant
generation strategy. Both have a strong impact on the security
and performance of the overall system and have been the focus
of extensive research in the past decade.

A. Monitor

The MVX monitor is responsible for comparing and syn-
chronizing the execution of the running process variants. These
variants all run on the same system, and ideally each have a
numbers of cores dedicated to them—we assume that a number
of cores can be explicitly dedicated to particularly security-
sensitive applications in modern many-core architectures. The
monitor itself might consist of several processes, for instance
one per variant, communicating via shared memory. The
entire MVX system (including the monitor) is designed to
be application- and user-transparent. For example, in the case
of a web server running under MVX, the user’s request will
get distributed to all variants. The monitor will also combine
the responses of all web server variants and give the user the
illusion she is directly talking to a single web server instance.
Furthermore, whenever these responses (or other operations)
are not equivalent across variants, the monitor can immediately
detect an attack attempt (as normal operations should never
trigger divergent behavior) and stop the variants before the
attacker could do any harm. In general, MVX does not lead
to more filesystem and socket I/O, as the monitor effectively
executes all syscalls, not every variant. On the other hand,
all variants will have to execute all instructions and memory

LKM
Dun

e
DBT

SBI

Ptra
ce

0

2

4

6

8

10

1
.1
2

7
.5
98
.7
2

5
.7
4

1
9
8
.6
1

1
.0
1

0
.9
3

5
.4
4

4
.7

2
1
6
.8
9

R
un

-t
im

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

Passthrough Emulation

Fig. 1. Overhead induced by several syscall interposition strategies
(passthrough and emulation mode) for a microbenchmark repeatedly issuing
getpid syscalls.

reads/writes by themselves, leading to more overall CPU usage
and potential memory bandwidth issues.

In most cases, syscalls are used as synchronization points,
as they are generally the primary way for each process to
interact with the environment (e.g., file system operations or
socket operations). A monitor operating at the syscall level can
capture and control external behavior while still allowing for
individual variants to exhibit different internal behavior.

A monitor must be able to intercept syscalls and their
arguments to compare process behavior across variants. It must
also be able to rewrite arguments, block syscalls, and modify
the return value (or memory) to ensure uniform and side effect-
free syscall handling across all the variants. In general, the
monitor needs to ensure all the variants are exposed to the
same environment view and information (e.g., PIDs) to avoid
unintentionally divergent behavior.

Several strategies have been used in prior MVX systems
to intercept syscalls, but all of them suffer from important
performance and/or security limitations. To gather insights
into these limitations, we evaluated the run-time overhead
induced by existing syscall interposition strategies for a simple
microbenchmark repeatedly issuing getpid syscalls. Figure 1
presents our results in both passthrough (i.e., forwarding the
original syscall to the underlying OS kernel) and emulation
(i.e., immediately returning the result to the application) mode.

As shown in the figure, an MVX monitor based on a
loadable kernel module (LKM) implements by far the most
efficient syscall interposition strategy in both modes of op-
eration, as it does not introduce additional context switches
and can directly access the process state. The problem with
this strategy, adopted by early MVX systems [23], is that
the monitor runs entirely in the kernel. This results in a
substantial increase of the trusted computing base (TCB) and
poor deployability: a single bug in the monitor could affect
the entire system, and the internal kernel API is very volatile.

At the opposite side of the spectrum lie traditional
ptrace-based MVX implementations [24], [31], [32], [25],
[26], which rely on the UNIX process tracing API to imple-
ment a deployable but highly inefficient syscall interposition
strategy. This strategy introduces multiple context switches be-
tween the monitor and the traced process per syscall, resulting

2

in by far the highest overheads (up to ∼217 times) for our
microbenchmark. On 64-bit systems a monitor using ptrace
cannot block syscalls, making emulation even more expensive
than passthrough. Syscall monitoring using ptrace is also
susceptible to TOCTOU attacks [33], which are hard to resolve
due to the large latency between operations and limited access
between the monitor’s and the application’s address spaces.

More recent MVX monitor implementations rely on static
binary instrumentation (SBI) to rewrite the binary and replace
any syscall instruction (e.g., int $0x80 or syscall) with
a call into the monitor. As shown in Figure 1, this syscall
interposition strategy is much more efficient (up to ∼5 times
overhead, based on the Dyninst SBI framework [34]), as it
requires no context switches and even no mode switches in
emulation mode. Unfortunately, this strategy is not generally
suitable for security applications, as an attacker can tamper
with the in-process monitor state or simply run uninstru-
mented unaligned syscall instructions (not part of the normal
instruction stream, as x86 does not enforce alignment) to
bypass syscall interposition and evade detection altogether. An
implementation based on dynamic binary translation (DBT), in
turn, would be able to instrument both aligned and unaligned
instructions and solve the latter problem, at the cost of slightly
higher syscall interposition overhead (up to ∼9 times overhead
in our experiment, based on the DynamoRIO DBT frame-
work [35]), but also a non-trivial impact during syscall-free
execution. To fully address the former problem, a DBT-based
solution needs to deploy additional instrumentation [16] (e.g.,
software-based fault isolation [36]), but this would also further
increase the overhead during syscall-free execution.

MvArmor, instead, relies on hardware-level process virtual-
ization to implement syscall interposition. For this purpose, we
use Dune, which virtualizes regular Linux processes and places
them in their own (hardware-supported) virtual environment.
As shown in Figure 1, this strategy is very efficient compared
to other techniques (up to ∼7 times overhead on getpid())
and meets all our security demands: small systemwide TCB,
fully isolated monitor with no in-process state, non-bypassable
(trap-based) syscall interposition mechanism. Furthermore, the
excellent performance in emulation mode and the ability to ac-
cess privileged CPU features provide interesting opportunities
for libOS-style optimizations [29], [30].

B. Variant generation

The variant generation strategy has a strong impact on
the classes of attacks addressed by the resulting MVX sys-
tem. Ideally, any attack should eventually result in divergent
behavior among variants. For instance, relying on ASLR for
variant generation makes it unlikely that two or more variants
share code pages at the same addresses, making code-reuse
attacks such as ROP [37] more difficult. By extending this
strategy to use MVX-aware (i.e. non-overlapping) address
spaces, traditional code-reuse attacks can be fully prevented.
This is because no code pointer can ever be valid in more than
one variant, and thus will cause a fault while dereferencing it in
all but one of the variants [23], [25], [27]. While this approach
will also stop arbitrary memory read and write attacks that
rely on absolute memory object locations (e.g., data pointer
overwrites), it cannot stop attacks that only rely on the relative
distance between memory objects. For instance, stack- or

heap-based buffer overreads that disclose private data (e.g.,
cryptographic keys) [3] and overflows that corrupt sensitive
non-pointer data (e.g., UIDs) [38] will still work reliably, as
these attacks only use relative memory accesses.

Alternative variant generation strategies include reversing
the direction of the stack [24] and randomizing the instruction
set [23]. These strategies add little additional security (e.g.,
addressing only stack-based and code injection attacks, respec-
tively) and often introduce non-trivial overhead by themselves.

MvArmor, in contrast, relies on a new MVX-aware variant
generation strategy, which seeks to minimize the run-time
performance impact while providing strong security guarantees
against arbitrary classes of attacks that rely on both absolute
and relative accesses in memory. Security policies allow the
user to choose between increasing levels of protection (both
probabilistic and deterministic), at the cost of a larger perfor-
mance overhead.

Finally, the advantage of using an MVX system over other
approaches with the same goals is that it can simultaneously
protect against multiple of these types of attacks with less
overhead (given enough spare CPU cores and resources), and
does not generally require access to the source or recompilation
of system libraries [10], [9].

III. THREAT MODEL

We assume a strong threat model where an attacker can
interact with the target program repeatedly, exploiting vulner-
abilities to read or write arbitrary data from/to memory. In par-
ticular, we assume an attacker can rely on both relative (e.g.,
buffer overread/overflow and partial pointer overwrites) and
absolute arbitrary memory read/write primitives (e.g., pointer
overwrites). We also assume both spatial (e.g., buffer over-
flows) and temporal (e.g., use-after-free) memory attacks [39].
Based on these primitives, we assume an attacker may pursue
any of the following goals (in line with the characteristics of
modern attacks [18], [40]):

• Arbitrary code execution: An attacker could execute
arbitrary code, for example issuing an execve syscall
using ROP [37] or other code-reuse techniques [41].

• Information disclosure: An attacker could leak sensitive
data from the target program, for example cryptographic
keys as in the case of Heartbleed [3].

• Information tampering: An attacker could tamper with
sensitive data, for example UIDs to escalate privileges, or
mount other non-control-data attacks [38], [40].

IV. OVERVIEW

Figure 2 shows the main components of MvArmor, which
all run inside a virtualized environment [28]. Additionally,
MvArmor can provide the same functionality for other syscall
interception methods by simply replacing the syscall frontend
and backend components. At startup, the variant generator
(Sec. V-A) spawns an application instance for every variant,
using an MVX-aware variant generation strategy in order to
protect applications from all the previously mentioned attack
vectors. The security manager (Sec. V-B), in turn, generates
security policies, providing a trade-off between security and

3

performance for the rest of the components. These security
policies can be defined by the user and depend on the classes
of attacks considered.

When the application executes a syscall, it will trap into
the syscall frontend (Sec. V-C). This component is the entry
point into both the monitor and the “kernel” (ring 0 code) of
the virtual environment. The syscall frontend also manages all
accesses to application state, such as its address space.

The frontend forwards all syscall events to the variant
manager (Sec. V-D), which is responsible for synchronizing
all variants and enforcing the security policies. The variant
managers communicate with each other using a ring buffer
similar to that proposed by Hosek and Cadar [22]. Specifically,
one of the variants (the leader) performs all of the actual
syscalls and sends the corresponding events to the other
variants (followers), who consume the events in their own time.
The followers only execute a small set of these syscalls as well
(e.g., memory management) as most I/O should happen only
once (e.g., sending data over a socket). Unlike traditional MVX
systems, the variants can run asynchronously most of the time,
removing the great performance bottleneck of running variants
in lockstep. However, unbridled asynchronicity is not safe. It
would allow one variant to achieve arbitrary code execution
with calls like exec, or information disclosure with calls
like write. Instead, we use the known distinction between
security-sensitive and non-security-sensitive syscalls [42], [43]
and enforce selective lock-step execution, where the set of
sensitive calls varies depending on the security policy.

The variant manager is also responsible for deciding when
a syscall should really be executed (leader) or when the
results should simply be copied (followers). When the variant
manager decides to execute a syscall, it sends it to the syscall
backend (Sec. V-E). In a naive implementation, the backend
would simply forward all syscalls to the real kernel. However,
each syscall in Dune requires a costly VM exit. To reduce
these costs, we implemented a set of (memory management
and getpid-like) syscalls directly in our monitor. Further
libOS-style optimizations are also possible—for instance, by
using a userspace network stack such as IX [29], or by batching
syscalls [44].

The variant manager uses the namespace manager
(Sec. V-F) to ensure all information available to variants is the
same (including PIDs, file descriptors, and timing information),
and finally the detector (Sec. V-G) to semantically compare the
execution of the variants for divergence.

V. MvArmor: FAST AND SECURE MVX

We now describe each of MvArmor’s components in detail.

A. Variant generator

A fundamental question in MVX is to what extent the
variants should differ. Unconstrained variation makes it impos-
sible to detect attacks from divergence, as everything may be
different. Conversely, insufficient variation is also undesirable,
as there may not be any divergence for an attack. Fortunately,
for memory errors the straightforward solution is to vary the
address space layout and keep everything else the same, as
these differences should normally not affect program execution

Syscall frontend

Variant manager

Syscall backend

Kernel

App2App1 Appn. . . Variant
generator

Security manager

Detector

Namespace manager

syscall

Dispatch syscall

Execute syscall

vmcall

Generate policy

Fig. 2. Overview of all MVX design components.

but will make a difference in the case of malicious memory
actions. In this section, we identify several techniques that
offer strong protection and detection against different classes
of memory error exploits and we detail the corresponding
implementation strategy in our current MvArmor prototype.
For our analysis, we assume the now common PIE binary
organization [45], but our design can, in principle, also handle
non-PIE binaries by marking static program segments as non-
relocatable and gracefully reduce security guarantees.

First of all, by using non-overlapping address spaces across
variants (pioneered by [23]), any absolute spatial attack (i.e.,
attack relying on absolute code/data addresses) is already
rendered ineffective. By ensuring that memory pages do not
overlap across variants, a pointer can only be valid in at most
one variant at a time and will thus deterministically crash all
others. This already stops common code-reuse attacks such
as ROP [37] and information disclosure attacks such as JIT-
ROP [46], as they rely on the absolute position of memory
pages. In fact, even any other attempts (e.g., buffer overreads)
to disclose code or data pointers will also cause divergence,
as different values will be leaked to the attacker at the syscall
level (e.g., over a socket) by construction. To enforce non-
overlapping address spaces across variants, we randomize each
variant using ASLR and then constrain ASLR not to reuse
address ranges across variants. Since our MVX system resides
in ring 0 of the virtualized environment, it has full control over
the page tables, making ASLR modifications simple. MvArmor
implements this technique for all the memory regions (i.e.,
code, data, stack, etc.) in each variant.

To also deterministically stop relative spatial attacks (i.e.,
attacks relying on relative code/data addresses), our variant
generation strategy must be able to provide strong guarantees
against buffer overflows/underflows and partial pointer over-
writes. We observe that, for this purpose, our strategy must
simply ensure that offsets between memory objects are non-
overlapping. For example, if the size between objects on, say,
the heap in a follower is as large as the entire (normal and
compact) heap in the leader, any offset added to a pointer can
only be valid in one of these variants. In other words, this
design ensures non-overlapping offset spaces across variants,
rendering all the relative spatial attacks ineffective. MvArmor
implements this novel technique for all the heap objects, by

4

MVX app

libDune
MvArmor

Dune module
Kernel

App

syscall

vmcall syscall

V
M

X
no

n-
ro

ot
ri

ng
3

ri
ng

0

V
M

X
root

ring
3

ring
0

Fig. 3. Control flow of syscalls with and without Dune.

using the standard “compact” allocator in the leader and a
custom “sparse” allocator in the followers. Extending such
guarantees to all the other memory objects is, in principle,
possible, but source-level information is generally necessary to
accurately decouple stack [47] and data [48] objects—although
binary-level approximations are at times possible [49].

While the strategies described thus far can provide de-
terministic protection against all the spatial attacks, they are
alone insufficient to stop temporal attacks (e.g., use-after-
free exploits). Unfortunately, ensuring deterministic protection
guarantees against generic temporal attacks is not practical
without source-level information [50]. A practical binary-level
alternative is to ensure probabilistic temporal safety guaran-
tees. In our design, this is done by using different (randomized)
memory allocators across variants and, to further limit the
attack surface, by approximating type-safe memory reuse [51]
at the binary level. MvArmor enforces probabilistic temporal
safety for all the heap objects, randomizing the standard allo-
cator with random inter-object gaps in the leader. In addition,
MvArmor overapproximates type-safe memory reuse using per-
size memory pools in our custom allocator in the followers (but
much less conservative binary-level approximations based on
allocation-time backtraces are also possible [51]).

While the implementation of all the proposed protection
techniques can introduce significant overhead when all com-
bined together on a single variant, their overhead can, in most
cases, be completely masked across variants with our MVX
design. In MvArmor, followers are faster than the leader, as
they do not execute most syscalls and thus waste several
cycles waiting for the leader. Our measurements show that,
for our baseline MvArmor implementation (i.e., without any
protection enabled) on (I/O bound) server applications, the
followers spend around 4,000 cycles on average per syscall
waiting for the leader. Especially when syscalls do not require
lockstep behavior, the idle periods leave sufficient time for
the followers to spend more time in more expensive alloca-
tor abstractions implementing our protection techniques. This
strategy provides strong security guarantees while reducing the
run-time overhead of the end-to-end solution.

B. Security manager

The security manager generates policies that allow users
to make trade-offs between security and performance. Specif-
ically, a policy specifies whether each syscall is considered
non-sensitive (event-streaming, meaning the leader can execute

it without synchronization), or sensitive (requiring lockstep
execution with other variants).

Security policies specify behavior at the level of the whole
system, individual syscalls, or even specific arguments (e.g.,
“If the execute bit in a permissions flag is set then. . . ”). In
MvArmor, we propose the following policies for each of the
aforementioned classes of attacks (but others are possible):

• Code execution: enforce full checks on execve and
mprotect/mmap with execute permissions set.

• Information disclosure: enforce full checks on I/O syscalls
that are able to leak data (e.g., write).

• Comprehensive: full checks on all syscalls.

In practice, the Code execution policy performs as effi-
ciently as a policy where no syscalls are considered sensitive,
since the syscalls considered by the Code execution policy are
rarely executed in most applications.

The Comprehensive security policy, in turn, is useful to
provide a generic catch-all strategy (and a lower bound on
performance) but, given a target threat model, may provide
comparable security to more tailored policies such as Code
execution and Information disclosure. The key insight is that
such security policies may delay detection of failed attacks,
but they do deterministically and immediately stop successful
attempts for all the attacks considered in the threat model.

C. Syscall frontend

When the application executes a syscall instruction, the
execution will trap from ring 3 into ring 0—kernel space.
By running the application and the monitor in a virtualized
environment, all syscalls will trap into the monitor instead
of the actual kernel. MvArmor is based on Dune [28], which
leverages virtualization to provide applications with access to
privileged CPU features in a safe way. For this purpose, Dune
relies on Intel VT-x extensions to allow a core to temporarily
switch from the normal kernel (VMX root) into virtualized
mode (VMX non-root) via the Dune hypervisor. Dune sets up
ring 0 code for both VMX root and non-root mode, as shown in
Figure 3. Since our monitor runs in privileged mode, it can also
access other features, such as page tables and interrupts. While
the same effect could be achieved by a kernel module or by
modifying the kernel directly, MvArmor completely separates
the monitor from the rest of the system, with no systemwide
TCB increase.

The syscall frontend receives syscall traps from libDune
and forwards them to the variant manager. In addition, the
frontend is responsible for access to the application state, such
as reads and writes to its address space.

Not all syscalls incur a trap on modern Linux systems;
in every application, the kernel sets up a shared library (the
virtual dynamic shared object—i.e., vDSO), which contains
code to execute a selection of syscalls without trapping into
the kernel. Using Dune, we can still intercept vDSO calls, by
mapping our own code containing syscall instructions in
place of the original vDSO.

5

D. Variant manager

Upon receiving a syscall event from the frontend, the
variant manager synchronizes with the other variants. Every
process has a ring buffer it shares with the respective processes
in other variants. Upon completion of a syscall, the leader
pushes it into the ring buffer together with its arguments
and return value. The followers compare their arguments to
those of the leader, and either execute the syscall themselves,
or use the return value provided by the leader. Specifically,
the variant manager has a per-syscall table to determine the
appropriate behavior. Certain syscalls should execute only once
(e.g., socket-related syscalls), while others should execute in
every variant (e.g., memory management calls). For the former,
the followers simply copy the return value of the leader.

The ring buffers resemble those in Varan [22] and provide
efficient communication without locking. We use atomic op-
erations to update the ring buffer entries and busy-waiting to
consume them. As syscalls like select and epoll_wait
may block for a long time, followers stop busy-waiting after
some time and go to sleep instead. Doing so is expensive
due to the VM exits required for both sleep and wake-up
calls. Assuming there is no shortage of cores, a more efficient
solution is to sleep using Intel’s monitor/mwait instructions
as they incur no VM exit. Because our Dune-based virtualized
environment runs in privileged mode, it can trivially use them
where normal applications cannot.

As mentioned earlier, the security policy determines
whether each syscall should run in lockstep, in which case
the leader waits for all followers after pushing the arguments
into the ring buffer. The followers then compare the syscalls
as usual and then pause while the leader finishes the syscall.
Doing so for every syscall (most conservative security policy)
has a higher performance impact.

For multi-threaded applications, we force the followers to
adhere to the order of syscalls of the leader. This strategy seeks
to prevent divergent behavior due to non-deterministic schedul-
ing decisions. This loose form of deterministic multithreading
(DMT) was shown to be generally sufficient for previous MVX
systems [32], [22]. Full DMT semantics could be used if issues
do occur (such as divergence because of benign data races), at
the cost of larger overhead [52], [53], [54].

E. Syscall backend

When a variant needs to execute a syscall, it forwards
the call to the syscall backend. Forwarding syscalls to the
kernel requires costly VM exits, so the syscall backend tries
to execute the syscall locally when possible. This is currently
implemented for memory management syscalls, but could be,
for example, extended to include userspace network stacks
such as IX [29]—which is also based on Dune. Besides
eliminating VM exits, userspace network stacks also improve
the overall performance of the application.

MVX monitors can be susceptible to time-of-check-to-
time-of-use (TOCTOU) attacks, where an attacker modifies the
arguments of a syscall in memory from a different thread after
the arguments are checked by the monitor but before they are
read by the kernel. This works because the arguments passed
to the syscalls are usually pointers to buffers or structures

in the address space of the application, copied separately by
the monitor (for checking) and the kernel (for execution). We
solve this by directly passing the pointers to the copied data
structures (in the monitor) to the kernel. Because no additional
copying is required, this introduces no performance overhead.

F. Namespace manager

The namespace manager ensures the variants do not diverge
accidentally by eliminating all variant-specific information.
For instance, if variants were to have access to their kernel-
assigned PIDs or timing information, they may (directly or
indirectly) use such data in a conditional, leading to divergent
behavior. The namespace manager therefore assigns virtual
PIDs and TIDs to every process and thread using a hierarchical
structure: when a variant creates threads in quick succession,
these must get the same virtual TID in all variants, regardless
of the order they actually appear on the system or the thread
that executed its clone operation earlier.

We similarly virtualize file descriptors, as only the leader
has access to all of them. For instance, followers do not
have access to sockets or files opened as writable. Since
the kernel assigns file descriptors in an incremental fashion
per process and the followers open fewer files (e.g., read-
only files) than the leader, these numbers start to diverge.
The namespace manager therefore maintains a mapping of
virtualized file descriptors to real (per-variant) file descriptors.
The same holds for epoll-related identifiers, including the user
data field. The epoll_wait syscall returns user-defined data
previously registered when a socket has an I/O event. Since
these values can be pointers (that differ per variant), they have
to be mapped back to the socket and then to the variant-specific
user data that should be returned for that socket.

Timing information should also not differ among variants,
as this is often used for logging or seeding the random number
generator. Since MvArmor has full control over the page tables
of the application, it can easily intercept all vDSO syscalls.
While not commonly used, we also disable the rdtsc in-
struction so that it traps into the monitor.

We ensure determinism in random number generation by
allowing only the leader to open files like /dev/random.
Pseudorandom number generators are generally seeded with
information already virtualized by the namespace manager and
require no additional effort to work correctly. We similarly
limit access to the /proc file system to the leader. Without
binary instrumentation, there is no easy way of interposing
rdrand instructions. By disabling the corresponding bit in
the cpuid implementation of the hypervisor, most normal
applications and libraries will not use it (e.g., OpenSSL). While
we have not observed the need to check on this further, we
could also configure the virtual environment to trap into the
hypervisor when the instruction is executed (via a bit in the
control structure of the virtual environment).

G. Detector

Since a syscall can take no more than six arguments,
many calls expect pointers to data structures which hold
more information (e.g., a buffer or struct). For a full
comparison between variants, the monitor therefore performs
a deep semantic copy and comparison of such arguments [23],

6

[32]. In MvArmor, the detector component performs both of
these functions.

H. Implementation

MvArmor consists of a library implementing all the com-
ponents in our design except for the frontend and backend.
We developed two implementations of these components: our
high-performance hardware-virtualization approach using the
Dune sandbox and a ptrace implementation for development
and debugging. These implementations call our shared library
for every syscall and expose several functions such as how
to access the monitored applications’ address space and how
to allocate memory across variants. The library itself consists
of around 5,000 lines of C code, whereas the frontends and
backends include around 500 lines of C code each.

The Dune sandbox, which is used to implement the default
frontend and backend of MvArmor, allows for arbitrary appli-
cations to run in Dune. The sandbox loads a given binary using
its own loader. It also implements bounds checking on any
pointer passed to a syscall to prevent sandboxed applications
from accessing ring 0 state such as the sandbox itself, the Dune
library, or the monitor. We slightly modified both Dune and
the sandbox to meet our requirements for the monitor, such as
security fixes and more callbacks.

To implement the protection techniques discussed in
Sec. V-A, we used a modified version of libumem2, a Linux
userspace port of the Solaris slab allocator [55], [56]. This
implementation served as a basis for our custom “sparse”
allocator. In particular, by limiting the number of objects
allowed (i.e., 1 object) per slab and adding padding (i.e.,
the leader’s maximum heap size) to every slab, we enforce
non-overlapping offset spaces between leader and followers.
By preserving the natural per-size pooling architecture of
libumem, we overapproximate type-safe memory reuse. Fur-
thermore, since we want to retain the standard (randomized) al-
locator in the leader (to preserve security, but also performance
guarantees in the slower leader), we assume both the standard
and our custom allocator as trusted to prevent the monitor from
detecting divergence caused by the different allocators (e.g.,
different syscalls to map memory). Note that while our custom
allocator reduces ASLR entropy, this is irrelevant as our MVX
security guarantees are stronger, and not ASLR-dependent.

VI. LIMITATIONS

At the time of writing, our MvArmor prototype has the
following limitations:

• MvArmor’s custom allocator is subject to Dune’s restric-
tions on the maximum per-process virtual memory size,
which currently requires relaxing the size restrictions
on inter-slab padding (and thus security) in memory-
intensive applications.

• While MvArmor can protect generic heap objects, it
cannot decouple intra-struct buffers or chunks managed
by custom memory allocators within each object without
source-level information, a limitation fundamental to all
the binary-level heap hardening solutions [51].

2https://github.com/gburd/libumem

• While MvArmor’s MVX library supports threading sim-
ilar to recent MVX solutions [22], it cannot currently
run multi-threaded applications. Extending our current
MvArmor prototype to support arbitrary multi-threaded
applications faces two challenges: (i) supporting thread
safety in Dune (currently thread-unsafe), and, when be-
nign data races are present (i.e., threads synchronizing
without syscalls such as futex), (ii) preserving correct
MVX semantics with a more strict form of DMT.

VII. EVALUATION

We evaluated MvArmor on a workstation with an Intel i7-
3770 quadcore CPU clocked at 3.4 GHz and 16 GB of RAM.
We disabled hyperthreading to eliminate (large) fluctuations in
our test results. We ran all our experiments on a Debian 8.0
system, running a Linux kernel 3.2 (x86 64).

For our evaluation, we considered a number of popular
server programs, which are heavily exposed to remote attacks
(and thus would greatly benefit from the security guaran-
tees provided by MvArmor) and have also been extensively
benchmarked in prior work. In particular, we selected nginx
(v0.8.54), lighttpd (v1.4.28), bind (v9.9.3), and beanstalkd
(v1.10) for our experiments. We benchmarked bind, a popular
name server, using the queryperf benchmark issuing 500,000
requests with 20 (default) threads. We benchmarked nginx
and lighttpd, both high-performance web servers, using the
wrk benchmark issuing 10 seconds worth of requests for a
4 KB page over 10 concurrent connections. We benchmarked
beanstalkd, a work queue, with the beanstalkd benchmark
issuing 100,000 push operations per worker over 10 concurrent
connections and 256 bytes of data. To directly compare against
Varan [22] (by far the fastest, but not security-oriented, state-
of-the-art MVX solution), we adopted the same benchmark
configurations (wrk and beanstalkd) considered in [22]—only
increasing the number of push operations in the beanstalkd
benchmark by a factor of 10 to ensure a sufficient benchmark
duration (i.e., 10-20 seconds).

We also evaluated MvArmor on microbenchmarks and on
the SPEC CPU2006 benchmark suite, focusing our experi-
ments on the CINT2006 benchmarks to reflect the configu-
ration considered in [22] and provide comparative results. We
ran all our experiments 11 times and report the median (with
small standard deviation across runs). We report results for
our default MvArmor configuration using a 10-element ring
buffer (allowing the leader to execute 10 syscalls ahead of
followers), but we observed similar results when moderately
increasing/decreasing the ring buffer size. Unless otherwise
noted, our experiments use the variant generation strategy from
Sec. V: the leader uses the default (randomized) allocator,
whereas each follower uses the modified libumem allocator.

A. Server Performance

To evaluate MvArmor’s performance on our server pro-
grams, we first attempted to reproduce the over-the-network
configuration described in [22], placing the client on a dedi-
cated machine on the same rack as the server machine, with
the 2 machines connected by a 1 Gbit/s ethernet link. In our
setup, this configuration was insufficient to effectively saturate
the server, reporting only marginal performance impact across

7

ng
inx

lig
htt

pd
bin

d

be
an

sta
lkd

ge
om

ea
n

1

2

3

4

1
.3
9

1
.6
6

1
.1
4

1
.3
3

1
.4
6

1
.4
1 1
.7

1
.1
6

1
.4 1
.4
9

1
.4

1
.7
9

1
.1
6

1
.4
2

1
.5
1

2
.2
2

2
.3
3

1
.6
4

3
.2
6

2
.2
9

R
un

-t
im

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

1 2 3 4

Fig. 4. Overhead using the Code execution security policy for increasing
number of variants.

ng
inx

lig
htt

pd
bin

d

be
an

sta
lkd

ge
om

ea
n

1

2

3

4

1
.3
9 1
.6
7

1
.1
3

1
.3
5

1
.3
7

1
.4
7 2
.0
1

1
.1
4 1
.7
3

1
.5
5

1
.4
8

2
.1
7

1
.1
5

1
.8

1
.6
1

2
.3
1 2
.6

1
.6
6

3
.8
2

2
.4
8

R
un

-t
im

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

1 2 3 4

Fig. 5. Overhead using the Comprehensive security policy for increasing
number of variants.

all our programs. To fully saturate all our server programs,
we then reran our benchmarks through the loopback interface.
We note that this strategy resulted in sound but also more
pessimistic performance results. As an example, the original
Dune paper reports ∼1% overhead on lighttpd for an over-
the-network configuration [28]. Reproducing the exact same
experiment in our setup (which, in contrast, relies on the
loopback interface) resulted in much higher impact (∼12%).
This is caused by less networking overhead, making the impact
of our system more visible.

We evaluated MvArmor’s performance across all the se-
curity policies supported. Figure 4 shows the results for the
Code execution security policy for an increasing number of
variants (1 through 4, where 2 variants means 1 leader and
1 follower). Since the server applications do not normally
execute any syscalls that fall under the Code execution policy,
the results are identical to a policy where no syscalls are
considered sensitive. When disabling our variant generation
strategy (isolating the MVX synchronization overhead) for
both policies, we observed no differences in the results. This
shows that the followers are indeed able to keep up with the
leader despite the less efficient secure allocator, hence our
variant generation strategy has essentially no impact. Note that
security policies have no effect on scenarios with only one
variant, as there is no synchronization in such scenarios.

Figure 6 reports results for a slightly more conservative
policy (Information disclosure). As our server applications
make heavy use of write syscalls, which run in lockstep now

ng
inx

lig
htt

pd
bin

d

be
an

sta
lkd

ge
om

ea
n

1

2

3

4

1
.4 1
.7
1

1
.1
2

1
.3
6

1
.3
8

1
.4
2 1
.8
4

1
.1
4 1
.5
3

1
.4
6

1
.4
5 1
.9
3

1
.1
5 1
.5
5

1
.4
9

2
.2
9

2
.4
4

1
.6
8

3
.3
5

2
.3
7

R
un

-t
im

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

1 2 3 4

Fig. 6. Overhead using the Information disclosure security policy for
increasing number of variants.

ng
inx

lig
htt

pd
bin

d

be
an

sta
lkd

ge
om

ea
n

1

2

3

4

1
.3
9 1
.6
8

1
.1
3

1
.3
8

1
.3
8

1
.4
4 1
.7
7

1
.1
4 1
.4
6

1
.4
3

1
.4
3 1
.7
7

1
.1
7 1
.4
8

1
.4
5

2
.2
8

2
.3
6

1
.6
5

3
.2
6

2
.3
2

R
un

-t
im

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

1 2 3 4

Fig. 7. Overhead using the Information disclosure security policy for
increasing number of variants with our variant generation strategy disabled.

(forcing idle time in the followers to be spent waiting for the
leader rather then performing extra operations), the overhead of
the slower followers (and of our variant generation strategy)
cannot be completely masked in this case. For comparison
purposes, Figure 7 reports results for the same policy, but with
our variant generation strategy disabled. Finally, Figure 5 re-
ports results for our most conservative security policy possible
(Comprehensive, generally overly conservative, but useful to
provide worst-case results). In this configuration, the impact
of our variant generation strategy (and custom allocator in the
followers) is more noticeable given that all the syscalls run in
lockstep (e.g., 55.2% vs. 49.1% for two variants, geomean).

As shown in the figures, programs with a lower number
of “copy-heavy” syscalls such as nginx and lighttpd scale
less efficiently with the number of variants and are also more
affected by the increasingly lockstep-like behavior enforced by
more conservative security policies (e.g., full lockstep for Com-
prehensive). Beanstalkd, on the other hand, issues relatively
few syscalls overall and the reported overheads are mostly
due to the copying costs for Beanstalkd’s large buffers. This
results in Beanstalkd performance being non-trivially impacted
by our syscall interposition strategy, but scaling well with
the number of variants and with more conservative security
policies. We observed similar behavior for bind, which only
issues 2 very “copy-heavy” syscalls per request (i.e., recvmsg
and sendmsg).

Overall, our results suggest that MvArmor scales well

8

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

ge
om

ea
n1

1.2

1.4

1.6

1.8
R

un
-t

im
e

ov
er

he
ad

(n
or

m
al

iz
ed

)

1 2 3 4

Fig. 8. Overhead for the SPEC CINT2006 benchmarks for an increasing
number of variants.

with the number of variants, for example with only a ∼3%
average overhead increase (geomean) when moving from a
2-variant to a 3-variant configuration (across different security
policies). We observe significant performance drops only when
exhausting the number of cores—a 4-variant configuration in
our 4-core setup, with a core dedicated to the benchmark
program. We also note that a more large-scale scalability
analysis, while possibly interesting, is irrelevant in practice.
MvArmor’s default configuration using 2 variants is sufficient
to provide strong security guarantees by construction and also
minimizes core utilization to encourage deployment in real-
world settings.

We now compare our results against Varan [22]. For a
fair comparison, we focus on the Code execution security
policy, which most closely matches Varan’s MVX strategy.
MvArmor’s performance is very similar to Varan for nginx
(41% vs. 37% for 2 variants, respectively), but we did observe
somewhat different results for beanstalkd and lighttpd. In
particular, for beanstalkd, our results show relatively low
and stable overheads for MvArmor (∼41%) and increasingly
higher overheads for Varan (52% and 57%, for 2 and 3
variants, respectively). Conversely, for lighttpd, Varan reports
low and nearly constant overheads (∼14%), while MvArmor’s
overheads start at 70% for 2 variants.

Overall, MvArmor’s overhead results are generally com-
parable to Varan, although our experiments show that the
actual performance of the 2 systems depends on the program
considered. We believe our results are very encouraging, given
that (i) Varan is the fastest existing MVX implementation, (ii)
compared to Varan, MvArmor provides much stronger security
guarantees even for our least conservative (Code execution)
security policy, (iii) our loopback-based performance results
are pessimistic and could also be improved by operating further
libOS-style optimizations enabled by our design.

B. SPEC Performance

To further compare our results against prior solutions, we
evaluated the performance impact induced by MvArmor on the
SPEC CINT2006 benchmarks. While the SPEC benchmarks
are CPU-intensive and issue a relatively low number of syscalls
(thereby providing optimistic performance results for MVX
systems), this experiment still provides useful comparative data
points. Figure 8 presents our findings.

tim
e

ge
tpi

d

clo
se(

-1)

writ
e /de

v/n
ull

writ
e file

0

2,000

4,000

6,000

8,000

1
01
4
0

1
7
1

2
3
3

2
,8
9
9

1
,5
2
0

1
,5
1
3

1
,4
8
6

1
,6
8
9

4
,8
4
1

1
,7
7
1

7
8
3 1
,8
1
1

2
,1
0
3

5
,6
4
7

1
,9
4
6

9
3
6 2
,0
0
7

2
,2
1
3

5
,7
2
4

A
vg

.c
yc

le
s

pe
r

ca
ll Native Dune MV1 MV2

Fig. 9. Average number cycles for various syscalls. Dune (using the sandbox
app) always runs in passthrough mode. MvArmor runs with 1 (MV1) or 2
(MV2) parallel variants using the Code execution security policy.

As shown in the figure, MvArmor yields an average over-
head of 9.1% (geomean) for 2 variants and 20.4% for 4 variants
across all the benchmarks. A closer inspection revealed that, in
most cases, the reported overheads primarily originated by the
impact on the memory bandwidth of the system. Benchmarks
such as mcf and libquantum are particularly memory-
intensive and tend not to scale well in simultaneous runs on
multi-core architectures [57].

Nevertheless, despite the greater impact of TLB misses in
memory-intensive benchmarks induced by the use of EPTs in
Dune [28], our results are encouraging and, in fact, even yield
better performance than Varan, the best MVX performer on
SPEC in the literature, reporting an average overhead of 14.2%
(geomean) with 2 variants [22] on the same set of benchmarks.

C. Microbenchmark Performance

To carefully pinpoint the sources of overhead introduced
by MvArmor, we evaluated our solution using a number of
microbenchmarks. In particular, we measured the number of
cycles required by various syscalls from the perspective of a
user program while running under Dune [28] and under our
full MvArmor solution with 1 or 2 variants (MV1 and MV2,
respectively). Figure 9 presents our findings.

Both the getpid and close(-1) syscalls have a very
short duration, with the kernel almost immediately returning
to userland. For these simple syscalls, Dune alone adds around
1,300 cycles, accounting for syscall interposition and (mostly)
for the vmcall to the host. MvArmor, in turn, adds around
300 extra cycles on top of Dune. Our microbenchmark results
are compatible with those in the original Dune paper [28]. As
the getpid syscall is currently implemented in MvArmor’s
backend, it does not require an expensive vmcall. This is
reflected in the significantly reduced overhead compared to
simply running Dune in passthrough mode (783 vs. 1,513 cy-
cles), even with the additional MVX logic in place. This shows
libOS-style optimizations are a viable strategy to speedup
MvArmor in the future.

The write syscall has a buffer argument, which first
undergoes bounds checking in Dune and then requires copying
the buffer in MvArmor’s monitor. For a small 5-byte buffer,
Dune alone adds around 1,500 cycles, while MvArmor adds

9

around 400 (/dev/null) and 800 (filesystem) extra cycles.
When writing to /dev/null, the kernel does not have to wait
for I/O, as opposed to the case of writes to the filesystem. Since
the overheads added by Dune and MvArmor are fairly constant,
the overall performance impact quickly becomes insignificant
with more lengthy I/O requests—such as those typically issued
by server programs.

The time syscall, part of the vDSO, can natively be
executed without a syscall instruction, but Dune remaps
the vDSO to force traps into the monitor. While this strategy
introduces a non-trivial performance impact (around 1,050
cycles for Dune alone), it also allows MvArmor to monitor
and alter its return value to ensure consistent variant behavior.

D. Security

To analyze the effectiveness of our variant generation
strategy against memory errors, we present an analytical
security analysis on different classes of exploits and draw
from real-world examples. We note that, since an empirical
evaluation of security against arbitrary existing exploits would
have trivially detected deviations (and thus attacks) in all
cases, we opted for an analytical analysis similar to prior
work on randomization-based solutions [48], [39].

First, memory error exploits that rely on absolute addresses
are deterministically prevented by MvArmor’s non-overlapping
address spaces across variants, regardless of the particular
security policy deployed. These exploits can be used to mount
many classes of attacks, ranging from modern code-reuse
attacks [37], [41] to information disclosure attacks [8].

To exemplify the security guarantees provided by MvArmor
for these classes of attacks, we consider an exploit based on a
real-world vulnerability (CVE-2004-0488). This vulnerability
allows an attacker to mount a stack-based buffer overflow
exploit against Apache httpd, corrupting a data pointer with
an absolute address and granting the attacker the ability to
read arbitrary memory values [8]. While this attack is effec-
tive against 1 standalone variant (assuming the attacker can
bypass ASLR [46] and disclose the intended absolute memory
address), an attacker will not be able to find a single absolute
memory address which is, at the same time, valid across 2
variants running in parallel—resulting in at least 1 protection
fault and MvArmor detecting the attack.

Memory error exploits that rely on relative addresses are
also deterministically prevented by MvArmor’s MVX-aware
allocator design deployed in the follower(s). These exploits
can be used to mount many classes of attacks, e.g., information
disclosure/tampering, and other non-control data attacks [40].

To exemplify the security guarantees provided by MvArmor
for these classes of attacks, we consider two real-world exploits
crafting relative memory read and write primitives to achieve
the attacker’s goals (respectively). We also speculate on an
attacker extending these exploits by using temporal vulnera-
bilities, to demonstrate how MvArmor would probabilistically
prevent more advanced attacks.

For the former case, we consider an exploit based on the
Heartbleed vulnerability in the OpenSSL library (CVE-2014-
0160). The exploit overreads a buffer located on the heap
to read security-sensitive data from other heap objects and

eventually allow the program to leak them over the network.
With MvArmor deployed, the attacker can only read data from
the leader because of the non-overlapping offset spaces. Any
attempt to read the object in the follower(s) as well would
require reading a size larger than the leader’s heap, causing
the leader to read past its heap and crash. Even if an attacker
were to find, say, a use-after-free vulnerability to leak the same
security-sensitive data, MvArmor would still probabilistically
stop the attack. Since the data is leaked using standard I/O
syscalls, MvArmor’s Information disclosure security policy
can immediately identify the divergent behavior of reading
probabilistically different data from different objects in the
leader and the followers (due to the different and randomized
allocators, as well as type-safe reuse in the follower(s) increas-
ing the gap), and thus still detect information disclosure.

For the latter case, we consider an exploit based on another
vulnerability in the OpenSSL library (CVE-2014-0195). The
vulnerability allows an attacker issuing a long non-initial frag-
ment to overflow a heap-allocated buffer and corrupt adjacent
data. The exploit relies on this primitive to corrupt security-
sensitive non-control data in other heap objects. With MvArmor
deployed, the attacker is, again, forced to overflow more data
to compensate for the inter-object gaps on the heap in the
follower(s) and reach the intended security-sensitive data (e.g.,
UID) across all the variants. However, any attempt to “spray”
this much data would again result in protection faults in at
least one of the variants, as described earlier. Similarly, even
if an attacker were to find, say, a use-after-free vulnerability to
tamper with the same security-sensitive data, any write will,
again, likely result in different side effects across variants and
probabilistically stop the attack.

Finally, since MvArmor captures deviations in external
behavior by monitoring differences in security-sensitive
syscall patterns, the detection guarantees provided against
such attacks improve with the conservativeness of the security
policy deployed. Note that when not deploying our most
conservative security policy (Comprehensive), MvArmor may
fail to detect some failed attack attempts immediately, but
will still detect (and disallow) all the behavioral deviations
induced by successful attack attempts that affect security
policy-defined syscalls.

VIII. RELATED WORK

The idea of using software diversity to improve fault
tolerance was first introduced by Avižienis and Chen [58]
in the seventies. Their idea of N-version programming had
multiple teams of programmers implementing the same soft-
ware, hoping bugs would be isolated to only one of the
versions. This paradigm was only later expanded to security
applications [59]. In 2006, Cox et al. [23] introduced the
idea of using automatically generated variants, rather than
versions, to improve deployability. They also analyzed multiple
monitoring strategies, such as syscalls (using a kernel module)
and a network proxy, and several variant generation strategies,
such as disjoint memory mappings and instruction set ran-
domization. DieHard [27], also published in 2006, proposed
a probabilistic memory safety solution including a “replicated
mode”. While similar in spirit, MvArmor provides far better
performance and security. Variant synchronization issues, in

10

turn, have been the focus of extensive research ever since [25],
[24], [32], [31], [26].

Salamat et al. [24] describe other variant generation strate-
gies in Orchestra, proposing a reversed stack in one variant
to prevent stack smashing attacks. Orchestra relies on the
ptrace API to interpose syscalls, similar to most existing
MVX monitors [25], [32], [31], [26]. In 2015, Hosek and
Cadar proposed Varan, which relies on static binary instru-
mentation in order to significantly improve MVX performance.
In contrast to MvArmor, Varan focuses on software reliability
rather than security, similar to other MVX-like systems such
as Tachyon [32] and Mx [22].

Varan’s event-streaming design shares similarities with
MvArmor’s variant synchronization strategy, in that they
are both based on a ring buffer design inspired by existing
high-performance lock-free ring buffers [60], [61]. The key
difference is that Varan’s event-streaming design is fully
asynchronous (other than not isolated from the untrusted
program execution) and unable to support the synchronous
detection policies employed by MvArmor’s design for security.
Varan’s event-streaming architecture shares, in fact, similarities
with record-and-replay systems, in which the execution is
continuously recorded into a log. This log can later be used to
reexecute the application, locally or on a different machine, and
optionally deploy additional checks during replay, for example
for security auditing purposes. An example in this category
is Paranoid Android, a record-and-replay system which can
efficiently deploy even heavyweight security analyses when
replaying mobile apps’ execution in the cloud [62].

The idea of combining ASLR [5] with MVX, allowing
for non-overlapping layouts to combat code-reuse (and other
absolute address-based) attacks, was first proposed by Cox et
al. [23]. MvArmor extends these techniques to build a new
MVX-aware variant strategy which allows complementary per-
variant allocators to control memory object allocation in a fine-
grained way and effectively counter arbitrary memory error
exploits that rely on both absolute and relative object locations.
MvArmor could be complemented with other memory layout
modification strategies, such as fine-grained randomization.
Fine-grained randomization [39], [48] has been previously
proposed as a comprehensive defense solution against arbitrary
memory error exploits, but has proven to be ineffective on its
own against modern information disclosure attacks that can
bypass any form of ASLR altogether [46].

Finally, the use of hardware-assisted virtualization to
sandbox individual processes (granting them access to
privileged CPU features) was first proposed by Dune [28],
which also forms the basis of MvArmor.Hardware-assisted
virtualization has also been used to isolate parts of the
operating system itself [63] and to facilitate libOS
implementations [64], [29], [30]. MvArmor draws from
prior research in both directions, on one hand, relying on
virtualization to efficiently and securely isolate the MVX
monitor from untrusted execution, and on the other hand,
exploiting libOS-style optimizations to further mitigate the
performance impact of traditional MVX implementations.

IX. CONCLUSION

In this paper, we presented a new design for secure yet
efficient MVX systems. Our MVX monitor design leverages
hardware-assisted process virtualization to securely and
efficiently gain full control over the running program variants.
We complemented our design with a new MVX-aware variant
generation strategy, which improves the performance and
security guarantees of all the prior MVX proposals, resulting
in a much more efficient and comprehensive defense solution.
Our end-to-end design effectively combines the comprehensive
protection against arbitrary memory error exploits provided by
fine-grained ASLR strategies with the strong attack detection
and disclosure-resistant guarantees provided by MVX.

We implemented our ideas in MvArmor, a new secure
and efficient MVX system. MvArmor demonstrates that many
of the performance and/or security limitations of existing
MVX solutions are not fundamental and can be effectively
addressed with a careful design. MvArmor’s policy-driven
detection strategy can provide strong and flexible security
guarantees at the cost of relatively low run-time overhead
for such a comprehensive security solution. Even more sur-
prisingly, MvArmor can match the performance of the fastest
MVX implementation available while providing far stronger
security. Finally, based on a design particularly amenable to
optimizations, we believe our framework can provide new
opportunities to further enhance the performance of MVX
systems. To foster further research in the area and in support of
open science, we are making our MvArmor prototype available
as open source, available at http://github.com/vusec/mvarmor.

X. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
comments. This work was supported by the European Commis-
sion through project H2020 ICT-32-2014 “SHARCS” under
Grant Agreement No. 644571 and by the Netherlands Organ-
isation for Scientific Research through the NWO 639.023.309
VICI “Dowsing” project and the NWO “Re-Cover” project.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in S&P, 2013.

[2] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos, “Memory
errors: the past, the present, and the future,” in RAID, 2012.

[3] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson, “The
matter of heartbleed,” in IMC, 2014.

[4] Microsoft, “A detailed description of the Data Execution Prevention
(DEP) feature,” http://support.microsoft.com/kb/875352, 2006.

[5] PAX Team, “PAX Address Space Layout Randomization,”
https://pax.grsecurity.net/docs/aslr.txt.

[6] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattle,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: automatic adaptive
detection and prevention of buffer-overflow attacks,” in USENIX SEC,
1998.

[7] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in S&P, 2014.

[8] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in CCS, 2014.

[9] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly compatible and complete spatial memory safety for C,” in PLDI,
2009.

11

http://github.com/vusec/mvarmor

[10] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “CETS:
Compiler enforced temporal safety for C,” in ISMM, 2010.

[11] D. Dhurjati and V. Adve, “Backwards-compatible array bounds check-
ing for C with very low overhead,” in ICSE, 2006.

[12] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds
checking: An efficient and backwards-compatible defense against out-
of-bounds errors,” in USENIX SEC, 2009.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity: Principles, implementations, and applications,” ACM TISSEC,
2009.

[14] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
USENIX SEC, 2013.

[15] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in GCC & LLVM,” in USENIX SEC, 2014.

[16] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in DIMVA, 2015.

[17] V. van der Veen, E. Göktaş, M. Contag, A. Pawloski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A tough call:
Mitigating advanced code-reuse attacks at the binary level practical
context-sensitive CFI,” in S&P, 2016.

[18] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in USENIX
SEC, 2015.

[19] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: overcoming control-flow integrity,” in S&P, 2014.

[20] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in USENIX SEC, 2014.

[21] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in USENIX SEC, 2014.

[22] P. Hosek and C. Cadar, “VARAN the unbelievable: An efficient N-
version execution framework,” in ASPLOS, 2015.

[23] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a secretless frame-
work for security through diversity,” in USENIX SEC, 2006.

[24] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: Intrusion
detection using parallel execution and monitoring of program variants
in user-space,” in EuroSys, 2009.

[25] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified process replicae
for defeating memory error exploits,” in IPCCC, 2007.

[26] S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere,
“GHUMVEE: efficient, effective, and flexible replication,” in FPS,
2012.

[27] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic memory safety
for unsafe languages,” in PLDI, 2006.

[28] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe user-level access to privileged CPU features,”
in OSDI, 2012.

[29] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high
throughput and low latency,” in OSDI, 2014.

[30] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” in OSDI, 2014.

[31] P. Hosek and C. Cadar, “Safe software updates via multi-version
execution,” in ICSE, 2013.

[32] M. Maurer and D. Brumley, “Tachyon: Tandem execution for efficient
live patch testing.” in USENIX SEC, 2012.

[33] N. Provos, “Improving host security with system call policies,” in
USENIX SEC, 2003.

[34] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
International Journal of High Performance Computing Applications,
2000.

[35] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in VEE, 2012.

[36] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in SOSP, 1993.

[37] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in CCS, 2007.

[38] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in USENIX SEC, 2005.

[39] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for
comprehensive protection from memory error exploits.” in USENIX
SEC, 2005.

[40] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in USENIX SEC, 2015.

[41] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming,” in S&P, 2015.

[42] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in USENIX SEC, 2013.

[43] V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
CFI,” in CCS, 2015.

[44] L. Soares and M. Stumm, “FlexSC: Flexible system call scheduling
with exception-less system calls,” in OSDI, 2010.

[45] https://wiki.ubuntu.com/Security/Features.
[46] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and

A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in S&P, 2013.

[47] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in OSDI, 2014.

[48] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space ran-
domization.” in USENIX SEC, 2012.

[49] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,
“Stackarmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries,” in NDSS, 2015.

[50] D. Dhurjati and V. Adve, “Efficiently detecting all dangling pointer uses
in production servers,” in DSN, 2006.

[51] P. Akritidis, “Cling: A memory allocator to mitigate dangling pointers.”
in USENIX SEC, 2010.

[52] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: efficient deter-
ministic multithreading in software,” ASPLOS, 2009.

[53] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Efficient system-enforced
deterministic parallelism,” in OSDI, 2010.

[54] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deterministic
shared memory multiprocessing,” in ASPLOS, 2009.

[55] J. Bonwick, “The slab allocator: An object-caching kernel memory
allocator,” in USENIX Summer, 1994.

[56] J. Bonwick and J. Adams, “Magazines and Vmem: Extending the slab
allocator to many CPUs and arbitrary resources,” in USENIX ATC, 2001.

[57] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation – a Pin-based memory
characterization of the SPEC CPU2000 and SPEC CPU2006
benchmark suites,” VSSAD Technical Report, 2007.

[58] A. Avižienis and L. Chen, “On the implementation of N-version pro-
gramming for software fault tolerance during execution,” in COMPSAC,
1977.

[59] M. K. Joseph and A. Avižienis, “A fault tolerance approach to computer
viruses,” in S&P, 1988.

[60] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley, “A concurrent
dynamic analysis framework for multicore hardware,” in OOPSLA,
2009.

[61] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart, “Disruptor:
High performance alternative to bounded queues for exchanging data
between concurrent threads,” Technical paper. LMAX, 2011.

[62] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: versatile protection for smartphones,” in ACSAC, 2010.

[63] R. Nikolaev and G. Back, “VirtuOS: an operating system with kernel
virtualization,” in SOSP, 2013.

[64] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch, B. Bond,
R. Olinsky, and G. C. Hunt, “Composing OS extensions safely and
efficiently with Bascule,” in EuroSys, 2013.

12

https://wiki.ubuntu.com/Security/Features

	Introduction
	Background
	Monitor
	Variant generation

	Threat model
	Overview
	MvArmor: fast and secure MVX
	Variant generator
	Security manager
	Syscall frontend
	Variant manager
	Syscall backend
	Namespace manager
	Detector
	Implementation

	Limitations
	Evaluation
	Server Performance
	SPEC Performance
	Microbenchmark Performance
	Security

	Related work
	Conclusion
	Acknowledgements
	References

