
Horizon 2020 Program (2014-2020)
Cybersecurity, Trustworthy ICT Research & Innovation Actions

Security-by-design for end-to-end security
ICT 32-2014

Secure Hardware-Software Architectures for
Robust Computing Systems †

Deliverable D3.2: Design specification of the SHARCS
hardware techniques

Abstract: This deliverable describes the design specification for all SHARCS
hardware techniques, which will be used in the WP5 applications covering
their hardware security requirements as analyzed in D3.1. It further ex-
plains how these techniques are integrated in the system architecture of
each application to provide, together with the software techniques (D4.2) a
complete solution for security.

Contractual Date of Delivery Month 24
Actual Date of Delivery Month 24
Deliverable Dissemination Level Public
Editor Ioannis Sourdis
Contributors CTH, FORTH, NEU, ONAPP, EAB
Quality Assurance Thomas Kamm (EB), Kaveh Razavi

(VUA)

† The research leading to these results has received funding from the European Union
Horizon 2020 Program (2014-2020) under grant agreement n° 644571.

www.sharcs-project.eu 2 January 2, 2017

The SHARCS Consortium

Foundation for Research
and Technology – Hellas

Coordinator Greece

Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Chalmers Tekniska Högskola Principal Contractor Sweden
Technische Universität Braunschweig Principal Contractor Germany
Neurasmus BV Principal Contractor The Netherlands
OnApp Limited Principal Contractor United Kingdom
IBM - Science and Technology LTD Principal Contractor Israel
Elektrobit Automotive GmbH Principal Contractor Germany

Document Revisions & Quality Assurance

Internal Reviewers

1. T. Kamm (EB)
2. K. Razavi (VUA)

Revisions
Ver. Date By Overview
0.0 25/10/2016 Editor I. Sourdis (CHAL) Outline of the document created.
0.1 23/11/2016 Editor E. Vasilakis

(CHAL)
Chalmers contributed to Section 3.

0.2 24/10/2016 Editor I. Sourdis (CHAL) Introduction text added.
0.3 28/11/2016 Editor G. Christou

(FORTH)
FORTH contribution in Section 3 added.

0.4 1/12/2016 Editor T. Kamm (EB) EB contributions in Section 2 added.
0.5 2/12/2016 Editor J. Thomson (On-

App)
OnApp contributions in Section 2
added.

0.6 7/12/2016 Editor C. Strydis (NEUR) Neurasmus contributions in Sections 2
and 3 added.

0.7 8/12/2016 Editor E. Vasilakis
(CHAL)

Minor fixes, document ready for inter-
nal review.

0.8 18/12/2016 Editor T. Kamm (EB), K.
Razavi (VUA)

Internal review completed.

1.0 28/12/2016 Editor I. Sourdis (CHAL) Addressing internal review comments,
preparing final version.

www.sharcs-project.eu 3 January 2, 2017

www.sharcs-project.eu 4 January 2, 2017

Contents

1 Introduction 9
1.1 Outline . 9
1.2 Connection to other SHARCS activities 9

2 Overview of the SHARCS hardware techniques and their use in
the SHARCS Systems 11
2.1 Use of the SHARCS hardware techniques in the Implantable

Medical Device . 12
2.2 Use of the SHARCS hardware techniques in the Automotive

application . 13
2.3 Use of the SHARCS hardware techniques in the Cloud pilot . 14

3 Design specifications of the SHARCS hardware techniques 17
3.1 Secure microprocessor architectures 17

3.1.1 Instruction-Set Randomization 18
3.1.2 Control-Flow Integrity 19
3.1.3 SISC: customized processor for secure communication 23

3.2 Secure Memory Architectures 25
3.2.1 Encryption of shared-memory data 26
3.2.2 Memory-Protection Unit for embedded SoCs 26
3.2.3 Data-Integrity mechanisms 29
3.2.4 Instruction ROM . 31

3.3 Secure communication . 31
3.3.1 Lightweight, secure-communication protocol 32
3.3.2 Lightweight, Secure Key-Exchange Protocol 38
3.3.3 FPGA-based NIDS . 44

5

A Appendix 47
A.1 IPI-Based Random-Number Generation 47

www.sharcs-project.eu 6 January 2, 2017

List of Figures

2.1 The Implantable Medical Device (IMD) System on Chip (SoC)
with the SHARCS hardware techniques. 12

2.2 Typical ECU Hardware overview 14
2.3 Overview of the ISR prototype 15
2.4 Hardware techniques that will be used in the Cloud pilot 15

3.1 Instruction Set Randomization overview. 19
3.2 Return States. 20
3.3 Indirect Call States. 21
3.4 Setjmp Finite State Machine. 21
3.5 Longjmp Finite State Machine. 22
3.6 The CFI pipeline. 22
3.7 SISC-architecture schematic diagram. 24
3.8 IMD baseline system with no memory protection 27
3.9 IMD baseline system with memory protection unit (MPU) . . 27
3.10 MPU Protection Table and crossbar. 29
3.11 IMD instruction ROM . 31
3.12 The proposed IMD security protocol conforming to ISO/IEC

9798, which guarantees mutual authentication between a reader
and IMD. 35

3.13 Key exchange using fuzzy commitment and heartbeats. 39
3.14 Illustration of inter-witness disparity, showing the IPIs ob-

tained by R and I (in decimals) and annotations highlighting
the disparity. In this example, R does not detect heartbeat 4. . 41

3.15 Key-exchange protocol. 42
3.16 Maxeler DFE based NIDS . 45

A.1 Witness generation. 48

7

LIST OF FIGURES

www.sharcs-project.eu 8 January 2, 2017

1
Introduction

This deliverable (D3.2) is the result of our activities in Tasks T3.2 Secure
processors, T3.3 Secure memory systems, and T3.4 Secure communica-
tion. It primarily describes the design specifications of the hardware security
mechanisms developed in the above tasks.

1.1 Outline

D3.2 is structured as follows: the WP3 hardware security techniques are
listed in Chapter 2 and briefly mapped to the SHARCS use cases. The details
of how WP3 techniques are adapted and integrated to the SHARCS systems
are provided in WP5 deliverables. Subsequently, Chapter 3 provides the de-
sign specifications of each WP3 technique. It is worth noting that although
WP3 activities have largely been determined by the requirements of the ap-
plications described in SHARCS, they are generic and may be additionally
applied to other systems, consequently they are described here as such.

1.2 Connection to other SHARCS activities

The WP3 hardware security requirements (D3.1) were used as a starting
point for D3.2. In turn, the design specifications of the WP3 techniques pro-
vide input to our further activities in Tasks T3.2, T3.3, and T3.4 which will
produce their final implementations in year 3 of the project. D3.2 further
provide input to WP5 where the hardware security techniques (as well as
the software ones) will be adapted and used in the SHARCS applications.

9

CHAPTER 1. INTRODUCTION

www.sharcs-project.eu 10 January 2, 2017

2
Overview of the SHARCS hardware techniques and their

use in the SHARCS Systems

This Chapter provides an overview of the SHARCS hardware techniques and
how they are mapped and used in the systems considered in the WP5 of the
SHARCS project, namely in the Implantable Medical Device (IMD), the au-
tomotive Electronic Control Unit (ECU) and the cloud computing. Together
with the software techniques designed in WP4, they will provide a complete
solution for security for the SHARCS applications. The detailed plan of in-
tegrating a subset of these techniques to each of the SHARCS applications
and systems is described in the WP5 deliverables.

In WP3, the following SHARCS hardware techniques are designed:

• An Instruction-Set Randomization (ISR) mechanism for detecting code
injection.

• A Control-Flow Integrity (CFI) mechanism for detecting and prevent-
ing code reuse.

• A custom security microprocessor (Smart-Implant Security Core (SISC))
for secure Implant-SoC communication.

• A Memory-Encryption Unit (MEU) for SoC.

• A Data-Integrity mechanism for memory blocks.

• An Instruction Read-Only Memory (ROM) for storing a fall-back de-
fault binary of a core used for mitigating code injection and code reuse
attacks.

• A secure Memory Protection Unit (MPU) is designed to control mem-
ory accesses in a SoC.

• A lightweight, secure data-exchange protocol for embedded systems.

11

CHAPTER 2. OVERVIEW OF THE SHARCS HARDWARE TECHNIQUES
AND THEIR USE IN THE SHARCS SYSTEMS

• A lightweight, secure key-exchange protocol for embedded systems.

• A FPGA-accelerated Network Intrusion Detection System (NIDS) for
high throughput and low-latency network security of large networking
systems.

In the remainder of this section we describe how the above hardware
techniques will be mapped to the SHARCS use cases.

2.1 Use of the SHARCS hardware techniques in the
Implantable Medical Device

Tranceiver

Sensor

Actuator Shared Memory

XBAR

Data
Mem

Instr.
Mem

Instr.
ROM

SIMS

ISR

Data
Mem SISC

Instr.
Mem

MPU

SEC
SED

Access
Rules

Figure 2.1: The IMD SoC with the SHARCS hardware techniques.

The design specifications of the implant use-case, as identified during
the first project year, have driven the design and development of the secure
implant SoC shown in Figure 2.1. The initial IMD SoC, originally intro-
duced in deliverable D2.1, consisted of a number of building blocks: the
main-functionality core (SiMS), a shared-memory block, sensor and actu-
ator blocks, a transceiver block and – finally – a bus interconnect block
(instantiated as an AMBA interface on the FPGA prototyping platform).

Of the hardware-security mechanisms identified in the introduction, a
subset has been deemed suitable and selected for porting onto the implant
SoC. These techniques are highlighted as blue-colored boxes in Figure 2.1,
which illustrated the SHARCS version of the IMD SoC.

First off, a secondary Instruction Memory (IM) in the form of a ROM
block, and a low-power version of Instruction Set Randomization (ISR) are
shown. The secondary IM (see section 3.2.4) can be used generally as a
standard method for safely updating the implant firmware. However, the
backup IM is included for an additional reason: It can be combined with the

www.sharcs-project.eu 12 January 2, 2017

2.2. USE OF THE SHARCS HARDWARE TECHNIQUES IN THE
AUTOMOTIVE APPLICATION

ISR mechanism to implement a defense against code injections and code
reuse in the critical SiMS core. The ISR mechanism is implemented in the
implant case as a XORing operator (see section 3.1.1) to perform instruction
(de)randomization in the IM. Once a mismatch between the expected and
the actually executed instruction is detected, a warning flag is raised and
the SiMS program counter toggles to the backup IM which is guaranteed to
hold an uncompromised SiMS binary.

Moreover, a security coprocessor (SISC) has been added to the implant
SoC (see section 3.1.3), as originally conceptualized and proposed in [44].
The SISC core is the primary security gateway for the whole system. It
essentially is an Application-Specific Instruction Processor (ASIP) optimized
for running lightweight security protocols (see sections 3.3.1 and 3.3.2),
well-suited for implantable devices.

The above components have already been added to the implant SoC and
their correct functionality has been demonstrated during the first project
review. More details on the current version of the implant platform are
given in deliverable D5.1. As Figure 2.1 suggests, two more components are
planned to be added to the overall design within the next year: a secure
MPU, and a data-integrity mechanism for protecting the shared-memory
unit of the implant. The two mechanisms are respectively detailed in sub-
sections 3.2.2, and 3.2.3.

Finally, it should be mentioned that the blocks in Figure 2.1 highlighted
in grey color are out of the scope of SHARCS and have been prototyped as
memory-mapped I/O peripherals under the direct control of a UART port.
More details on their implementation and prototyping details will be given
in deliverable D5.1 and are out of the scope of this deliverable.

2.2 Use of the SHARCS hardware techniques in the
Automotive application

In a modern premium car there are up to 80 different Electronic Control
Units (ECU) installed. Each ECU is responsible for a specific function. You
can find for example ECUs for engine control, braking, window lift and the
infotainment system. A typical ECU (see figure 2.2) consists of an automo-
tive microcontroller and different sensors (e.g. speed) as well as actors (e.g.
engines). Furthermore the ECUs are interconnected with automotive bus
systems like CAN to communicate with each other.

Through SHARCS, the Electronic Control Units (ECUs) will be enhanced
with secure hardware and software to prevent attackers from manipulat-
ing functionality or gaining unauthorized access to those ECUs. The main
threat, which must be prevented at all events, is the remote exploitation
of a possible vulnerability in a large number of cars. New security mecha-
nisms like Instruction Set Randomization (ISR) and Control Flow Integrity

www.sharcs-project.eu 13 January 2, 2017

CHAPTER 2. OVERVIEW OF THE SHARCS HARDWARE TECHNIQUES
AND THEIR USE IN THE SHARCS SYSTEMS

Figure 2.2: Typical ECU Hardware overview

(CFI) might be appropriate to achieve this and to guarantee the safety and
security of passengers on the road.

The most secure approach is to harden the hardware layer as proposed
by the SHARCS clean slate approach. However, in a typical Electronic Con-
trol Unit (ECU) an automotive qualified microcontroller is used. Enhancing
these controllers with hardware security features is not feasible in the frame
of the SHARCS project. We are therefore using a hardware prototyping plat-
form instead to show the effectiveness as well as the usability in an auto-
motive environment. If the solution is considered to be effective and robust
future automotive microcontrollers might also support the newly introduced
security mechanisms.

The hardware prototype emulates an Electronic Control Unit with com-
munication interfaces and actors. In our demonstrator we are controlling
some LEDs. We intentionally implemented a very general use case because
the new security feature shall be applicable to a variety of automotive appli-
cations (e.g. infotainment, door locker). The prototype is shown in figure
2.3. The integrated Instruction Set Randomization (ISR) is highlighted in
green color.

More details about the automotive use case as well as the prototype can
be found in deliverable D5.3.

2.3 Use of the SHARCS hardware techniques in the
Cloud pilot

The Network Intrusion Detection System (NIDS), is an FPGA based network
traffic monitoring solution. The management and storage traffic are seen by

www.sharcs-project.eu 14 January 2, 2017

2.3. USE OF THE SHARCS HARDWARE TECHNIQUES IN THE CLOUD
PILOT

Figure 2.3: Overview of the automotive hardware prototype. The added
SHARCS features are highlighted in green colour

the Backup Server as indicated in Figure 2.4 and so it makes sense for the
NIDS device to be located there. The Network Interface Card (NIC) on the
Backup Server can be set to promiscuous mode to monitor all traffic flowing
in the network and the switch can be used to mirror and expose traffic that
is directed at other ports to the Backup Server, for further processing by
the NIDS hardware. The NIDS hardware will be able to flag warnings and
errors to the Control Panel server by means of an API that will be developed
specifically for this purpose.

Figure 2.4: Hardware techniques that will be used in the Cloud pilot

Given that each of the Hypervisors in the OnApp Cloud deployment can
host multiple tenants it will be important to attribute the actions of particu-
lar Virtual Machines (VMs) to malicious network actions. One way that this

www.sharcs-project.eu 15 January 2, 2017

CHAPTER 2. OVERVIEW OF THE SHARCS HARDWARE TECHNIQUES
AND THEIR USE IN THE SHARCS SYSTEMS

could be done is by providing applications with their own specific VLANs or
monitoring based on a public IP that is associated with a VM. Each VM has
a private IP address as well as potentially a public address and so it is im-
portant to detect any malicious traffic to or from such VM in order to carry
out further actions. A simple step after detection could be to limit the net-
work activity (rate limit) of that particular VM through modification of the
hypervisor network for a given time if it is found to be causing interference.
Further actions might be to deactivate the VM for a period of time. These
actions though will all be defined by the Control Panel server to allow an
administrator to decide what course of actions should be taken at either a
Cloud or specific user level.

Experimentation will be needed to determine the right sampling inter-
vals, the types of traffic to monitor and how to best highlight and respond
to malicious flows. This will require collaboration between CTH and ON-
APP with an experimental system to determine how to initially configure all
the variables and determine how to best make use of the additional security
hardware.

www.sharcs-project.eu 16 January 2, 2017

3
Design specifications of the SHARCS hardware techniques

In this section, we describe the design specifications of the SHARCS hard-
ware techniques. In particular, for the processor security covered in Task
T3.2, we describe the ISR and Control Flow Integrity (CFI) mechanisms
designed by FORTH to detect and prevent malicious code injection and
reuse. In addition, the custom SISC processor designed by Neurasmus and
Chalmers is detailed that supports secure SoC communication, handling en-
cryption/decryption tasks more efficiently, and security protocols. For mem-
ory security (Task T3.3), we explain our solution for encryption and data
integrity offered by FORTH and Chalmers, respectively. Moreover, a ROM is
integrated by Chalmers for storing a default binary of a core so to mitigate
code injection and code reuse attacks. A secure MPU is designed to control
memory accesses in a SoC. Related to Task T3.4, we describe the design
specifications of the secure data- and key-exchange protocols designed by
Neurasmus and Chalmers; these techniques are suitable for embedded sys-
tems that can use biometrics. Finally, an FPGA accelerated NIDS is designed
by Chalmers1 to provide low-latency network security for large networking
systems. Details of the above follow in the rest of this chapter.

3.1 Secure microprocessor architectures

ISR, CFI, and the customized RISC processor for secure communication
(SISC) are the three techniques we work on within T3.2. Their design spec-
ifications are described below.

1Software-only NIDS implementations are designed in WP4, however, depending on the
throughput and latency constraints of a system, the FPGA-based NIDS is expected to deliver
better performance.

17

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

3.1.1 Instruction-Set Randomization

Instruction-Set Randomization (ISR) is a promising technique capable of
mitigating code injection attacks. The main principle behind ISR is to en-
crypt the instructions of executables residing in the main memory and de-
crypting them just before execution. This simple principle is enough to pre-
vent the execution of arbitrary code injected to a running program by an
attacker. Even if an attacker successfully injects code and diverts the control
flow to the injected code, the result will be an execution exception, since
the injected code will not translate to any meaningful machine instruction.

ISR is part of the SHARCS clean-slate approach and integrated to each
use-case regarding the requirements. The automotive use-case consists of
a POSIX compliant Operating System and System on Chip with a variety of
peripherals. The modifications in order to enable ISR for user-level applica-
tions each layer is enhanced with security, from processor core to compila-
tion and linking of the application as overviewed in figure 3.1.

Specifically, the application source code must be compiled with a new
header (assembly file with new ELF header) which defines the encryption
algorithm of ISR and instructs the ELF loader to enable ISR for the loaded
application. Additionally, during compilation certain optimizations must be
disabled in order to avoid data residing inside the code segment (e.g., jump
tables). Finally, the linker using a linking script ensures that data and text
section reside in different memory pages. Those modifications are minimal
and most applications can be recompiled with ISR without any change in
the source code, in other words, applications are transparently protected.

The operating system is modified in three key parts. The ELF loader
recognizes ISR binaries and generates a unique random encryption key on
each run. Also, the generated keys are stored in the ISR application Process
Control Block. The scheduler is responsible to toggle the ISR functionality
bit for ISR/non-ISR applications and set the appropriate key every time an
ISR application is scheduled. Finally, the page fault handler encrypts the
faulting page with the application key if the owner application is ISR en-
abled and the page fault originates from text segment (i.e. the faulting page
contains code).

In the processor core the additional hardware consists of the key regis-
ters, where the scheduler loads the decryption key for the application, the
ISR toggles bit in order to enable/disable ISR for applications with/with-
out ISR and hardware decryption units. Before an instruction populates the
instruction cache, it is decrypted using the loaded application key.

When an injection occurs, the execution of the incorrectly decoded in-
structions will most probably result in an illegal instruction exception which
can be handled from the user-level.

www.sharcs-project.eu 18 January 2, 2017

3.1. SECURE MICROPROCESSOR ARCHITECTURES

Figure 3.1: Instruction Set Randomization overview.

3.1.2 Control-Flow Integrity

Code reuse is one of the most prevalent forms of exploit in use today. To de-
fend against such an attack, Control-Flow Integrity (CFI) was proposed [1].
Unfortunately, most CFI implementations to date either introduced pro-
hibitive amounts of complexity to the application being defended, inducing
extreme overhead, or reduced the complexity by simplifying the security
scheme.

To address this problem, we proposed HCFI [12]; a CFI implementa-
tion designed as an architectural extension to CPUs. Our proposed scheme

www.sharcs-project.eu 19 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

Normal
Execution

Flow

Return
Address

Validation

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Control
Flow

Violation

Figure 3.2: Return States.

offers a policy-agnostic, fine-grained, CFI extension to the Instruction Set
Architecture (ISA).

In layman’s terms, we added new instructions to an already existing ISA,
namely the SPARC Architecture, that allow for a developer to define his own
principles for CFI instrumentation, without compromising the security of the
scheme, or the overall performance.

The additions to the ISA consist of 6 new instructions that operate on
three new memory elements. Particularly:

A pair of instructions (SetPC, CheckPC) that, with the assistance of
a hidden shadow stack, validate all return instructions allowing for per-
fect backward-edge CFI. SetPC pushes the current Program Counter to the
shadow stack when a function call takes place, while CheckPC pops the top
value from the shadow stack, and compares it to the address of the next
instruction executed, typically the first instruction after a return. A Finite
State Machine (FSM) describing this functionality is shown in figure 3.2.

Two instructions used in forward-edge CFI (SetPCLabel, CheckLabel),
essentially validating all indirect branches and calls, using another of the
memory elements, a Label Register. SetPCLabel stores a label, which it car-

www.sharcs-project.eu 20 January 2, 2017

3.1. SECURE MICROPROCESSOR ARCHITECTURES

Normal
Execution

Flow

Label Register
Return

Address
Label

Control
Flow

Violation

Shadow Stack

0x1234

0xabcd0

0xbeef0

0xcafe0

….

0

1

0

0

Indirect
Call

State

Figure 3.3: Indirect Call States.

Normal
Execution

Flow

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Save top
Shadow Stack

Index

Setjmp
Labels

10

….

Current
Index

label

Figure 3.4: Setjmp Finite State Machine.

www.sharcs-project.eu 21 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

Normal
Execution

Flow

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Shadow Stack
Sync
State

Setjmp
Labels

10

….

Stored
Index

label

Long jump
State

Any
Instruction

Figure 3.5: Longjmp Finite State Machine.

Shadow Stack

0x1234

0xabcd0

0xbeef0

0xcafe0

….

Label
Register

Program
Counter

PC
Stage

CFI
Exception

Stage

Control Flow
Exception

CFI
Memory

Stage

Push/Pop
 PC

Stack
Status

Set/Reset
Label

Label
Stage

Label

SETLABEL
State

SETLABEL
state

0

1

0

0

Top PC

Get
Label

Figure 3.6: The CFI pipeline.

www.sharcs-project.eu 22 January 2, 2017

3.1. SECURE MICROPROCESSOR ARCHITECTURES

ries as an argument, to the label register, while also executing the func-
tionality of SetPC. Finally, it sets a rule that only CheckLabel instructions
are legal until a CheckLabel with the correct label is executed. CheckLabel
compares the label it carries with the register. The granularity of the policy
enforced is controlled by the developer and the effort of analysis they per-
form on the application code. The granularity, of the policy enforced, can be
as fine as required. The FSM of the forward edge functionality is detailed in
figure 3.3.

The final pair of instructions(SJCFI, LJCFI), assisted by the last memory
element, allow for the implementation of workarounds for edge-cases (e.g.
setjmp/longjmp). An SJCFI instruction stores the shadow stack’s current
height to the memory (shown in figure 3.4), while an LJCFI sets the current
height to the one stored in memory, as long as the value is lower than the
current (figure 3.5). Those can override the shadow stack’s current height
to lower it to a previous value; essentially jumping over stack-frames.

Those instructions are executed in a separate pipeline (figure 3.6), paral-
lel to the original core’s pipeline. The resulting spacial overhead and power
requirements are very low, making this design suitable for small form-factor
devices.

3.1.3 SISC: customized processor for secure communication

In this subsection, we concisely present the SISC architecture, a custom-
designed, security ASIP. By definition, an ASIP is more power-consuming
but also more flexible compared to an ASIC through changing the binary
code it executes. Thus, an ASIP strikes a better trade-off between optimized
performance/power and design flexibility.

The use of processor-based implant controllers has been demonstrated
in various designs in the past [43, 17, 15, 50, 46, 48, 19] whereby in-vivo
reprogramming of the implant has been successfully performed. Although
these cases focused on reprogramming the main implant processor, in this
work we extend the reprogramming capabilities of the implant security core.
We believe this feature to be pivotal for the design of realistically safe and
secure future implants for the following reason: IMDs comprise a narrow
market niche and, as such, have to this point attracted only limited (malev-
olent) attention. As IMD use is becoming more widespread over time, more
systematic and versatile security attacks are bound to be mounted. Unfortu-
nately, under such conditions, the incorporated security of many future com-
mercial IMDs will be compromised. The only eventual safeguard against this
will be the in-vivo reprogramming of such devices for adding extra phases
in the security scheme, changing the protocol altogether, and so on. Such
major updates are impossible under an ASIC approach and device replace-
ment through surgery will be needed, which is an action to be taken only as
a last resort.

www.sharcs-project.eu 23 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

Zero

ext

Sign

ext

M
U

X
M

U
X

M
U

X

M
U

X

Reg

File

Stall

detect

1

Figure 3.7: SISC-architecture schematic diagram.

Since our SISC design needs to be low-energy, but also perform non-
trivial computations (see sections 3.3.1 and 3.3.2), we have chosen to im-
plement an integer, in-order RISC-style architecture. We have selected to
design a typical 5-pipeline-stage processor which consists of Instruction-
Fetch, Decode, Execution, Memory and Write-Back stages. It consists of
a 16-bit instruction set along with 16 registers of 32 bits each. In our case,
the use of 32-bit registers is important because the encryption and decryp-
tion algorithms of our design benchmarks are operating on 32-bit quantities
(i.e., MISTY1). When run on a standard, in-order RISC core, the encryp-
tion algorithm generates a significant amount of read-after-write hazards.
In order to reduce the instruction binary size – or, equivalently, the implant
memory needs – in our SISC design, NOPs are removed from the binary at
compile time and are dynamically inserted at runtime whenever a hazard is
detected. With this optimization, the IMEM size is 24 KB and the DMEM
size is 16 KB. The architecture schematic is shown in Figure 3.7.

The SISC ISA consists of 25 instructions listed in Table 3.1. Profiling of
the SISC security-protocol traces (to be discussed later on) have yielded var-
ious potential optimizations. One such optimization is the replacement of
the very frequent mov-and-beqz group by an instruction extension (mandb),
highlighted in grey in the table. With this optimization introduced in the
baseline core, the execution time has been reduced by 34.31% and the en-
ergy cost by 34.26% at a scant power increase of 0.73%. The SISC proces-
sor and C compiler have been designed by using the Synopsys Processor-
Designer and Compiler-Designer tools.

A number of other optimizations is possible and constitutes part of the
ongoing effort of NEU. For instance, the current version of the C compiler

www.sharcs-project.eu 24 January 2, 2017

3.2. SECURE MEMORY ARCHITECTURES

Table 3.1: SISC Instruction-Set Architecture: supported types and syntax
are listed. An implemented instruction extension is highlighted in grey.

type instruction format
rr op [4] reg [4] reg [4] funct [4]
rrr op [4] reg [4] reg [4] reg [4]
ri op [4] reg [4] imm [8]
jump op [4] imm [12]

name type assembly action
jr rr jr rd branch to addr[rd]
and rr and rd,rs rd← rd and rs
lw rr lw rd,rs rd← mem[rs]
sw rr sw rd,rs mem[rs]← rd
mov rr mov rd,rs rd← rs
not rr not rd,rs rd← not rs
or rr or rd,rs rd← rd or rs
xor rr xor rd,rs rd← rd xor rs
sub rr sub rd,rs rd← rd-rs
add rr add rd,rs rd← rd+rs
lb rr lb rd,rs rd← mem[rs] (byte)
se rr se rd,rs if(rd==rs) rd←1 else rd←0
sgt rr sgt rd,rs if(rd>rs) rd←1 else rd←0(signed)
sgtu rr sgtu rd,rs if(rd>rs) rd←1 else rd←0(unsigned)
beqz rr beqz rd,rs if(rd==0) branch to addr[rs]
subi ri subi rd,imm rd←rd-imm
addi ri addi rd,imm rd←rd+imm
li ri li rd,imm rd←imm
sftl ri sftl rd,imm rd←rd<<imm
sftr ri sftr rd,imm rd←rd>>imm(sign extension)
sftru ri sftru rd,imm rd←rd>>imm(zero extension)
cb rrr cb rd,rs1,rs2 exchanges the rs2th-byte of rd by the LSB of rs1
mandb rrr mandb rd,rs1,rs2 if (rd and rs1==0) branch to addr[rs2]
j jump j imm branch to addr[imm]
jal jump jal imm branch to addr[imm] and r15←PC+1

performs efficient scheduling of the program code but, other than that, it
performs no additional optimizations, e.g., for low power. However, this
version of SISC (and compiler) is intended as a proof-of-concept security
core for demonstrating efficient, system-wide security.

3.2 Secure Memory Architectures

In T3.3 we work on the following techniques related to secure memory hier-
archy of a system. The first two approaches provide data protection through
encryption and error-detection codes. The third approach enforces particu-
lar memory access rights to different SoC nodes via a secure MPU. Finally,
as means to mitigate system code injection attacks, an instruction ROM is
used to store a basic default code of a processor. The design specifications
of the above are detailed below.

www.sharcs-project.eu 25 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

3.2.1 Encryption of shared-memory data

Numerous threats like DMA attacks, bus monitoring etc. pose a serious
threat regarding the confidentiality of sensitive data. The state of the art
protection of sensitive data residing in addressable memory is encryption.
In order for encryption to be an effective countermeasure, the algorithm
used must meet all the encryption standards. The most suitable encryption
algorithm is AES which is resistant to known cipher-text known plain-text
attacks and the only way to acquire the original data is by using brute-force
methods (i.e., try all the possible keys). Since, AES is very expensive when
implemented in software, modern processors include hardware accelerators
(i.e, AES-NI), in order to minimize the cost of cryptographic operations.
The memory encryption scheme consists of a simple principle, data are de-
crypted before being used for computation (i.e., loaded to registers) and
encrypted when stored back to memory. However, even using the exist-
ing hardware cryptographic accelerators by placing AES instructions before
loads and stores the execution time of a whole memory encryption protected
application is at least tenfold the execution time of the same application
running without memory encryption. Thus, a clean-slate approach and a
classification method for sensitive memory regions should be considered in
order to amortize the massive overhead of this security technique.

3.2.2 Memory-Protection Unit for embedded SoCs

There exist many embedded SoCs which are bare-metal not having any op-
erating system support. That may be motivated by a variety of reasons such
as cost, energy-efficiency, and low latency. One such example is the IMD
SHARCS use case. Such systems may not demand any sophisticated OS
support for their main functionality, however, the lack of an operating sys-
tem leaves a gap in the memory protection that would normally be covered
by memory-access rules imposed by an OS and corresponding mechanisms
such as a Translation Lookaside Buffer (TLB) and page tables.

Especially in multi-core embedded systems, all the above cases blur the
lines between the responsibilities of the different cores and dictate that there
must be a mechanism in place so that data and functionality sharing is done
in a controlled and safe manner. To exemplify, we can consider the IMD
example depicted in Figure 3.8. SiSC is the core responsible for the commu-
nication with external readers, through which data logs are exchanged or
even firmware updates are performed. In case SISC becomes compromised
by a successful code injection or code reuse attack, given the current state
of the system where everything is connected together via a shared bus, the
attacker could have access to all system memory and peripherals without
compromising the SiMS core. To prevent such scenarios, we propose the
use of a Memory Protection Unit (MPU) (Figure 3.9). The MPU will sani-

www.sharcs-project.eu 26 January 2, 2017

3.2. SECURE MEMORY ARCHITECTURES

tize all shared memory and peripheral read and write requests with a set of
predefined and also dynamic access rules enforced by hardware.

SiMS

Shared Bus

SISC

Tranceiver

Sensor

Actuator Shared Memory

Figure 3.8: IMD baseline system with no memory protection

The MPU will be implemented as a security mechanism along with a
crossbar rather than a shared bus to further protect against Denial of Service
(DoS) attacks. The crossbar will use fixed priorities, in the IMD case favoring
SiMS which runs the main implant functionality. Using the MPU with a
crossbar will ensure that even with a compromised part of the SoC, DoS
attacks are not possible thought the shared bus.

SiMS

SISC

Tranceiver

Sensor

Actuator Shared Memory

MPU

Figure 3.9: IMD baseline system with memory protection unit (MPU)

www.sharcs-project.eu 27 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

3.2.2.1 MPU design

The access rules enforced by the MPU will be encoded and will only be
updated by authenticated users through the SiSC core during a firmware
update, in a similar manner the binary of a core is updated. More precisely,
the MPU will implement a basic authentication protocol based on a shared
secret key that is not known to the attacker. This means that even if an
attacker manages to perform a successful attack on a SoC component, they
will be unable to change the memory protection rules. Because of this it is
not possible to gain further control of the system and get access to memory
regions for which the compromised SoC component has no access rights.

Figure 3.10 shows the MPU protection table, which has the following
fields:

• Starting address

• End address

• Permissions for SoC component-1

• Permissions for SoC component-2

• ...

• Permissions for SoC component-X

The start and end address fields are inclusive and can be the same so
that even single memory locations can be specified in the protection table.
The permissions for each SoC component are two bit entries that specify
read/write attributes for the respective memory ranges. The protection ta-
ble is integrated to the crossbar that interconnects the SoC components.
During each access from any to any component, the memory operation is
checked against the protection table. If the access is allowed based on the
specified rules then the request is routed to the memory or peripheral tar-
get. In the opposite case, where the memory operation is not allowed, the
request is not forwarded and a flag is raised indicating that a request to a
non-permitted region was attempted. Such flag may be used to notify the
requesting component or a central security manager of the SoC.

The size of the protection table depends on the SoC size (number of com-
ponents) and the granularity of the protected memory regions. For more
fine-grain protection the table requires more entries, while for more com-
ponents it requires wider rows to store their permissions. It is noteworthy
that all memory regions (table entries) need to be accessed in parallel for
each simultaneous connection. That poses additional complexity in the im-
plementation of the protection table.

Protection Table updates: The protection table may need to be dynam-
ically updated for a number of different use cases related to the application

www.sharcs-project.eu 28 January 2, 2017

3.2. SECURE MEMORY ARCHITECTURES

XBAR

Start End r/w r/w

Protection Table

... ...

Figure 3.10: MPU Protection Table and crossbar.

of a SoC. In the IMD case, for example, one such scenario could be that a
physician wants to have temporary direct control of the actuator to admin-
ister some treatment. To facilitate this, the protection table will be itself
memory mapped, and updating it should be performed with an additional
security protection mechanism. For this reason, the MPU will implement a
basic authentication protocol based on a shared secret key that is not known
to the attacker. This means that even if an attacker manages to perform a
successful attack to some part of the SoC, they will be unable to change the
memory protection rules without the secret key. This extra authentication
will be implemented in hardware in the MPU. For any change of the pro-
tection table, the user will have to provide an authentication token that is
based on a shared secret key programmed in the hardware at fabrication
time.

3.2.3 Data-Integrity mechanisms

Integrity of data stored in on-chip memory blocks is a very important factor
for mission-critical SoCs. This technique provides a hardware mechanism
for detecting and correcting unintentional modifications of data stored in a
memory block. This mechanism considers that normal memory reads and
writes are protected by other security mechanisms as described in this Sec-
tion (e.g. MPU, memory encryption, or ISR for ensuring secure processor
memory accesses). Consequently, this technique protects memory contents
against unintentional alteration of data caused by other types of attacks

www.sharcs-project.eu 29 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

such as Electro-Magnetic Interference (EMI). Such a mechanism should be
present in safety-critical systems for fault tolerance reasons as well.

There is a large amount of related work on Error Correcting Codes (ECC)
in memory, such as the well-known 2D ECC [23]. However, there is a trade-
off between coverage and cost of such codes: the stronger the error detec-
tion and correction the higher the additional number of bits required for
protecting a memory row.

In this task, data integrity is intended to be applied in small embedded
SoC’s. Consequently, the overhead of ECC should be low. To balance the
cost and the effectiveness of such a technique we will implement a Single
Error Correction/Single Error Detection (SECSED) code for on-chip memory
blocks. Since data is read and written at 32-bit granularity SECSED codes
will be applied for every 32-bit word in the protected memories. Such a
protection scheme allows for the detection of single bit errors and the cor-
rection of such errors with an area overhead of 6 bits for every 32-bit word
which is acceptable for the IMD use case. The computational complexity of
SECSED is in the order of a few gate delays which can be easily tolerated by
the IMD application since performance is not critical.

The most common implementation of SEC codes is by using parity H-
matrix with r rows and n columns [3] [11]. The encoding and decoding
circuitry requires four modules: Parity generator, Syndrome generator, Error
locater, and Error corrector.

Parity Generator: Each parity check-bit can be constructed by modulo-
2 sum of particular data-bits. The encoding process for a (38,32) SEC code
requires generating 6 parity check-bits. Placing parity check-bits in power-
of-two position makes it possible for the parity generator module to compute
the parity bits independent of each other [49]. The parity check-bit genera-
tion can be implemented with a 3-deep Xor logic tree. The incurred delay is
negligible considering the intrinsic delay of a 3-port Xor gate (i.e., in 28nm
ST technology is around 40ps).

Syndrome Generator: On the receiver side, the same parity generator
module can be employed to reconstruct the parity check-bits which form
a syndrome vector. For a given code and error position, it is a common
practice to precompute and store syndromes in a 32x6 syndrome table. If
all the bits in the generated syndrome are equal to zero, there has been no
fault.

Error locator: If the syndrome generated from the received codeword
is not equal to zero, then the syndrome table will locate the position of the
error.

Error corrector: Corrects the detected error.

www.sharcs-project.eu 30 January 2, 2017

3.3. SECURE COMMUNICATION

3.2.4 Instruction ROM

Instruction-Set Randomization (ISR) is a technique that can protect against
code injection attacks even at extremely resource constrained devices such
as an IMD. In full-fledged systems, mitigation of such attacks is provided by
the runtime or operating system. However, bare-metal embedded systems
that have tight constraints on area and power require a different mecha-
nism for mitigating code injection attack. In order to provide a response to
an ISR-detected code injection attempt on a core of an embedded bare-metal
SoC, we add an instruction ROM (I-ROM). The I-ROM is preloaded with a
default failsafe functionality for the protected core (Figure 3.11) and when
an ISR violation is detected, instead of trapping to the operating system as
full-systems would do, the protected core is reset and switches to the fail-
safe binary stored in the I-ROM (rather than the normal instruction ROM).
Switching back to the normal operation can only be achieved through a
firmware update. In other words, when the normal instruction memory of
the core is updated with a new executable, the core goes back to its full
functionality until another possible ISR violation occurs.

SiMS

IMEM

I-ROM

Select
ResetISR

Memory
Select

Mux

Figure 3.11: IMD instruction ROM

3.3 Secure communication

In T3.4 we work on three techniques for secure communication. The first
two are complementary and involve (a) a lightweight, secure data-exchange
protocol (and supporting hardware), and (b) a lightweight, secure key-
exchange protocol. Both protocols are targeting implantable devices but
can – largely – be used in other types of energy-constrained devices. The
third one is a hardware-accelerated Network Intrusion Detection. The de-
sign specifications of both are described below.

www.sharcs-project.eu 31 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

3.3.1 Lightweight, secure-communication protocol

Achieving security for an implant is a challenging endeavor that hinges on
various interworking system aspects. Roughly speaking (and adhering to
the strategy described in Deliverable D2.1), it can be divided into two parts.
The first part, present in every secure system, is to make the system resilient
to attacks. The second part – not so common in most other secure systems –
pertains to the IMD requirements of being power- and energy-efficient and
the need for communication during medical emergencies. In this section
we will focus on security protocols suitable for implantable systems, with
other (coinciding) hardware and software aspects left for the rest of this
Deliverable (D3.2) and Deliverable D4.2.

To justify our protocol design choices, we have to introduce our adver-
sarial model and security threats (recounted from Deliverable D2.1).

3.3.1.1 Adversarial Model

The goal of Adversary A is to obtain leverage over a patient which can be
used to A’s advantage. We design our security solution for an active ad-
versary, i.e., A has full control of the channel and may eavesdrop, modify,
drop and replay messages exchanged between Reader R and Implant I, in
addition to forging his own messages. We note that this is a strong assump-
tion (it is unlikely that A is present when R and I are communicating given
the limited communication range), yet, we consider IMD security important
enough to assume such a worst-case model. Finally, we assume that R is a
trusted entity without malicious intentions.

3.3.1.2 Security attributes and attacks

Based on our adversarial model, we next outline the security attributes that
should be guaranteed by our security solution and exemplify the security
risks without these attributes in place.

• Confidentiality: The confidentiality of messages ensures that only R
and I can read the messages exchanged between them. Given the
strong privacy of the data exchanged between R and I (treatment
parameters, private patient data, etc.), any messages exchanged be-
tween R and I should be confidential under both US and EU legisla-
tion [2, 13]. Without confidentiality (or, if confidentiality is broken
through e.g. identifying weaknesses in a cipher), A could eavesdrop
on these messages, which compromises sensitive patient data. In turn,
the leakage of private patient data could lead to a variety of repercus-
sions for the patient, ranging from blackmail to social segregation (for
instance, if an employer can identify that a potential employee carries
an IMD, he might feel inclined not to hire him).

www.sharcs-project.eu 32 January 2, 2017

3.3. SECURE COMMUNICATION

• Authentication: Authentication proves that R and I are who they
claim they are. Without authentication (or, if it is compromised using
e.g. a replay attack) could lead to I believing that A is a trusted entity.
In turn, this may give A the ability to make any modifications that
R is allowed to make: For example, A could modify the firmware to
include ransomware (i.e. prevent treatment until a ransom is paid),
or give a deadly shock to the patient [24]. Alternatively, A may pre-
tend to be I and exchange malicious messages with R: For example,
A could transmit incorrect/old data-logs to R, leading to a wrongful
diagnosis and, indirectly, to a malicious modification of I ’s firmware.
Since spoofing either R or I could result in harm for the patient, mu-
tual authentication is required.

• Integrity: The integrity of a message ensures that the data exchanged
between R and I cannot be changed without R and I noticing these
changes. Similar to bypassing authentication, message alternation
may be used to inject malicious and potentially dangerous commands
to the IMD. The integrity of messages sent by both R and I should,
thus, be verifiable.

• Availability: Availability pertains to both I being capable of perform-
ing its regular functionality and R being able to communicate with
I. The often life-critical functionality performed by I requires a high
availability throughout its lifetime. We distinguish three types of at-
tacks on I ’s availability:

– Function DoS: Function Denial-of-Service (DoS) occurs when A
blocks the main functionality of I without compromising its con-
fidentiality, authentication or integrity attributes. For instance, if
I always serves a communication request whenever it is made, A
may prevent I from performing its main functionality by flooding
it with (invalid) communication requests.

– Battery DoS: Battery DoS occurs when A depletes the battery of
I. For instance, if A repeatedly requests a specific operation from
the implant, I will repeatedly run the same authentication pro-
tocol for analyzing the request and, eventually, deplete its power
source even if the request itself is not valid.

– Jam DoS: This type of DoS occurs when A blocks the commu-
nication channel of I by constantly sending it valid or invalid
messages. In normal cases, I and R will frequently communi-
cate non-mission-critical information in a protected environment,
making jam DoS a non-issue. It may be possible for a A to launch
jam-DoS attacks during medical emergencies (if proximal to I
and R). In such cases, the only possible solution is to shield the

www.sharcs-project.eu 33 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

communication between I and R or increase their signal strength
to be well above that of A. We consider such solutions outside
the scope of our work and, as such, assume that a jam-DoS attack
shall never occur.

3.3.1.3 Protocol Description

In terms of availability and without loss of general applicability, the protocol
proposed here can ensure function DoS use of an IMD system architecture
which isolates the security functionality from the main implant functionality
by using a dedicated security co-processor (as described as early as Deliv-
erable D2.1). The system-architecture implementation details are given in
Deliverable D5.1 which should be read in conjunction with the protocol dis-
cussion in this section.

Another type of DoS, battery DoS, is tackled in a different manner: The
protocol has been designed so that the mutual-authentication phase (to be
elaborated next) is so energy-efficient that it can be done completely on
harvested RF energy, if the system (here: the implant) supports it. Only if
mutual authentical is successful, does the protocol permit toggling to battery
power and proceeding with normal communication. This strategy ensures
that no adversary can exhaust the implant battery by mounting continuous
authentication requests that will eventually fail, yet threaten to deplete the
battery by simply causing the implant run (and drop) authentication checks.

The remaining security attributes (confidentiality, authentication and in-
tegrity) of the communication between R and I will be covered through ac-
tively designing a security protocol that complements our proposed system
architecture. There are two approaches to designing a security protocol: (i)
design a protocol from scratch; or (ii) design a protocol based on an in-
ternational standard. The former may lead to novel (e.g., more efficient)
solutions, yet might suffer from security vulnerabilities even when a rigor-
ous security analysis is conducted together with the protocol proposal. For
instance, over the last years many RFID authentication protocols followed
this approach and a significant number of them have been partially or com-
pletely broken [47, 53, 7]. The advantage of using standards is that they
have been deeply scrutinized by the community before being part of a regu-
lation, which provides some guarantees regarding their security and a lower
chance of latent errors [9, 6]. As our primary goal is to propose fully secure
IMDs, we have based our security protocol on standards and established
international recommendations. Under this approach, the construction of
messages is set by the standard(s) but the message content and various ex-
tra fields are dependent on the application context. Last but not least, the
usage of a standard security scheme for implants has the added benefit of
narrowing the gap between research and actual, commercial IMDs.

www.sharcs-project.eu 34 January 2, 2017

3.3. SECURE COMMUNICATION

Reader R Implant I

IDR−−−−−−→
Pick a random NI

NI←−−−−−−
Pick a random NR

NR,{NR,NI ,IDI ,[[CMD]]KRI
}KRI

,[[CMD]]KRI−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Compute local version
of MAC and verify
Decrypt [[CMD]]KRI

{NI ,NR,IDR,[[ANS]]KRI
}KRI

,[[ANS]]KRI←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute local version

of MAC and verify
Decrypt [[ANS]]KRI

Figure 3.12: The proposed IMD security protocol conforming to ISO/IEC
9798, which guarantees mutual authentication between a reader and IMD.
Minimal effort is required from the IMD prior to reader authentication, al-
lowing the IMD to operate on RF-harvested energy.

In the context of medical implants and with the previous system choices
in mind, we have drawn final decisions on how our protocol should facilitate
the confidentiality, integrity and authentication security attributes. First, we
have decided to use symmetric-key cryptography for message encryption
(confidentiality) and for Message-Authentication-Code (MAC) (integrity, au-
thentication) calculation. The reason is that symmetric-key cryptography is
often regarded as considerably less energy-hungry than public-key cryptog-
raphy [26, 25]. The main downside of symmetric-key cryptography is that
each entity pair (R, I) requires a unique key KRI that should be kept se-
cret by both entities and stored on I. Consequently, as the number of pairs
increases, it becomes increasingly harder to distribute these keys, ensure
that they are kept secure and, additionally, IMD-storage requirements in-
crease. The assumption is made here that only a small number of valid
readers exist: A typical example would include the patient himself, a few
close relatives and his treating physician2. This leads to a small number of
R− I pairs, making symmetric keys a viable (and preferred) option. In this
work, we assume that these keys are pre-distributed to the different readers
by a manufacturer and do not change over time. In practice, keys could be
replaced, invalidated or created by an authorized reader using our security
protocol discussed below, which implicitly facilitates such operations.

Our proposed solution is based on ISO/IEC 9798 [18], which speci-
fies six schemes based on symmetric-encryption algorithms that provide
various degrees of authentication: unilateral authentication, mutual au-
thentication and authentication with key establishment using a third-entity

2For more details, refer to Deliverable D2.1, Section 2.1.3: “User Roles”.

www.sharcs-project.eu 35 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

(server). Since we identified that mutual authentication is required for IMDs
in Section 3.3.1.2, our proposed scheme is based on the fourth (mutual-
authentication) protocol specified in the standard and is depicted in Fig-
ure 3.12. Here, the entities share a key KRI and its identifiers are IDR

and IDI respectively, Nx symbolizes a random number generated by entity
X, [[M]]K represents the encryption of message M with key K to provide
confidentiality and {M}K symbolizes a message-authentication code (MAC)
to provide authentication and integrity through encrypting M with K. In
practice, both [[M]]K and {M}K are calculated using the same symmetric
cipher: The difference is that the MAC includes an identifier and random
nonces (number-once: freshly generated unique numbers generated by both
R and I) to ensure authentication using a new message (i.e., so as to pre-
vent replay attacks). The messages may include a command field (CMD)
or answer field (ANS), which dependend on the intended data exchange
(e.g., readout data-logs or modify treatment parameters). In detail, our pro-
tocol in Figure 3.12 facilitates secure communication through the following
steps:

1. R→ I: IDR. R wakes up I and shares its identifier, which is used by
I to choose the correct KRI .

2. I → R: NI . I generates a nonce NI and sends it to R.

3. R → I: NR, {NR, NI , IDI , [[CMD]]KRI
}KRI

, [[CMD]]KRI
. R gen-

erates a random nonce NR and encrypts the command using KRI

([[CMD]]KRI
) to provide confidentiality. R also computes a MAC to

provide both authentication and message integrity, including [[CMD]]KRI

and the nonces to ensure that a unique MAC is generated (with high
probability) provided that at least one of the entities is legitimate.
Finally, R transmits its nonce NR together with the MAC and an en-
crypted version of the command to I.

4. I → R: {NI , NR, IDR, ANS}KRI
, [[ANS]]KRI

. I validates if the mes-
sage has been received correctly and was sent by R by calculating
a local version of the MAC and checking its equality to the received
value. If this validation fails, the implant aborts the protocol. If not,
R has successfully been identified as a trusted entity and the CMD is
ready to be processed. At this stage, the SISC is allowed to switch to
the battery supply to execute the received command. I first decrypts
CMD and, after executing the command, it exchanges the respond
command (ANS) in a similar fashion to that in step (3), i.e., using a
MAC and encrypting ANS.

5. R receives the message from I and calculates a local version of the
MAC. If the received values and the computed values are equal, R and

www.sharcs-project.eu 36 January 2, 2017

3.3. SECURE COMMUNICATION

I are mutually authenticated and the subsequently decrypted ANS is
accepted by R. If not, I has failed to authenticate itself (or: message
integrity is violated) and its reply is dropped.

3.3.1.4 Protocol Implementation Aspects

We start by fixing the bit length of the values used in the protocol by taking
as reference common values used in low-cost RFID tags due to their rough
similarities with implants (computational, memory, power-consumption re-
strictions) [16, 20]. The identifiers are 96 bits long (|IDR| = |IDI | = 96)
and the bit length of random numbers is set to 32 (|NR| = |NI | = 32) [14].
Commands are 32 bits long (|CMD| = 32), as we expect this size to be large
enough to cover all command options for the IMD, and answer codes are a
multiple of 32 bits (|ANS| = n× 32).

Regarding security primitives, we employ a lightweight and secure sym-
metric cipher (abbreviated CIPH below). From all possible candidates – and
without loss of generality – we chose MISTY1 which is a 64-bit lightweight
block cipher [32] using an 128-bit long key. Our choice is based on a suit-
ability analysis on symmetric ciphers for medical implants [45]. Out of 13
profiled ciphers, MISTY1 has been found best-suited for implants since it
ranks high across most metrics such as power consumption, energy cost and
encryption speed.

Aiming to reuse the selected primitive (to minimize instruction-memory
overheads), we also use a MAC algorithm that is based on this symmetric-
key block cipher (cipher-based MAC or CMAC). Our algorithm follows the
NIST 800-38B Recommendation [30], providing guidelines for using block
ciphers for our purposes. The sub-keys used in the cipher are generated
according to the specification (NIST 800-38B; pages 7-8 [30]) and are gen-
erated and stored in the memory of the entities involved (e.g., reader and
implant) at the key-distribution phase. Given the block size of 64 bits, a mes-
sage M is divided into blocks of 64 bits for computing the MAC T = {M}K ,
i.e., M1||M2|| · · ·Mm, where m = |M |/64. The CMAC algorithm is described
below:

CMAC Algorithm
1. C0 = 0
2. For i = 1 to m, let Ci = CIPHK(Ci−1 ⊕Mi).
3. T = Cm

4. Return T

Apart from the MAC, random numbers are used in our protocol. As spec-
ified in the NIST 800-38A specification [29] (“Recommendation for Block-
Cipher Modes of Operation”), we use our block cipher in a counter mode,

www.sharcs-project.eu 37 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

called CTR, to generate a fresh nonce. In CTR mode, a 64-bit pseudoran-
dom number (Oj) is produced by encrypting a counter value (j) with any
key KRI . From this 64-bit number, we use the least-significant 32-bits as a
nonce (Nj). The algorithm proposed is described below:

Block cipher - CTR Mode
1. Oj = CIPHk(j ++)
2. Nj = |Oj |0···31

The secure-communication protocol has, finally, been implementation in
ANSI C and can be successfully compiled by the SISC C-compiler. It is made
available as a SHARCS technique for lightweight communication. More de-
tails on the protocol can be found in [36, 38-41].

3.3.2 Lightweight, Secure Key-Exchange Protocol

The security protocol detailed in Section 3.3.1, above, provides secure com-
munication between a trusted reader R and implant I based on a symmetric
key KRI already shared between them. An external reader R can, therefore,
only communicate with I if a key KRI is shared between the two. During
emergencies, however, R and I are likely unknown to each other and there-
fore do not share a secret key. Our goal is, then, to transfer KRI from I
to R in a secure and trustworthy manner, which subsequently allows R to
communicate with I using its regular security protocol (e.g. the one pre-
sented in Section 3.3.1). To do so, R and I first need a way to establish trust
between them, after which key exchange ensues. The protocol described in
this section addresses exactly this trusted key exchange between entities.

One promising way to facilitate this exchange is to use the cardiac Inter-
Pulse Interval (IPI), that is, the time difference between two consecutive
heartbeats [37, 34, 52, 33] as a Pseudo-Random-Number Generator (PRNG)3.
Each IPI contains a number of random bits, which may only be obtained
(with some consistency) by R and I if they simultaneously measure a car-
diac signal from the same person. These characteristics essentially make IPIs
time- and person-specific random numbers, which allows IPIs to be used for
entity authentication [34, 37] or, in this case, key exchange [4, 10, 27]. In
the latter case, I (generates and) commits KRI using its own IPIs; R may
subsequently decommit KRI using R’s IPIs. Our protocol distinguishes itself
from related work through a novel way of overcoming heartbeat misdetection
which is crucial for proper IPI-based random-number generation. It does so
based on heartbeat classification and ignoring any IPIs which have been
affected by misdetection, while at the same time providing an low-energy

3For details on random-number generation based on IPIs, refer to Appendix A, Sec-
tion A.1.

www.sharcs-project.eu 38 January 2, 2017

3.3. SECURE COMMUNICATION

solution suitable for implants (more details given below). Most studies re-
lated to IPI-based security do not consider heartbeat misdetection. However,
a recent, preliminary study has shown that it may have a significant effect
on inter-witness disparity [37]4.

3.3.2.1 Key Exchange through Fuzzy Commitment

During trust establishment, external reader R and IMD I use IPIs to derive
freshly generated, random numbers called witnesses wR and wI , respectively,
where wR ≈ wI . This makes them suitable for both entity authentication
and confidentiality purposes. With these properties in mind, we could try
to exchange a symmetric key KRI by first having I encrypt it using wI in
a similar fashion to a one-time pad (OTP) [52], i.e., using a simple xor
operation (KRI ⊕ wI). If wR = wI , R may subsequently decrypt KRI using
wR (as KRI ⊕ wI ⊕ wR = KRI).

wR

Witness gen.

KRI KRI’
wI

Witness gen.

ECC ECC-1

{{KRI}}w , h(KRI)I

Figure 3.13: Key exchange using fuzzy commitment and heartbeats.

Unfortunately, it is common in biometrics that wR ≈ wI , i.e., wR 6= wI ,
which prohibits R from successfully decrypting KRI using only a xor oper-
ation. We can employ a so-called fuzzy-commitment scheme, as illustrated
in Figure 3.13. This involves applying error-correcting codes (ECC) to KRI

prior to encryption [22] in order to achieve robust matching of witnesses.
That is, I commits KRI as {{KRI}}wI = ECC(KRI) ⊕ wI , where {{x}} is
the commitment of x. On its own, this commitment provides entity authen-
tication and confidentiality.

To also facilitate data integrity, I also calculates a cryptographic hash of
KRI (h(KRI)), and sends the entire message to R (I → R : {{KRI}}wI , h(KRI)).
R may subsequently obtain K ′RI through the inverse process of commitment,
where K ′RI = KRpI iff wR ≈ wI . To validate the correct exchange of KRI , R
hashes its decoded key h(K ′RI) and compares it to h(KRI), which match iff

4The inter-witness disparity is determined both by the inter-sensor variability and the
probability of each entity (I or R) detecting each heartbeat correctly. In turn, inter-sensor
variance is the variance between two different sensor measurements of cardiac biosignals,
caused by the variable pulse-transition time of ventricular contraction (heartbeats) to the
rest of the body due to, for example, motion and pressure differences. Incorrect heartbeat
detection (the detection of a non-existing heartbeat or not-detecting an actual heartbeat)
results from, among others, sensor-movement artifacts or imperfections in the detection
algorithm.

www.sharcs-project.eu 39 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

K ′RI = KRI . In our protocol, we make use of this fuzzy-commitment strat-
egy but we also demonstrate that fuzzy commitment (on its own) cannot
tolerate the disparity resulting from heartbeat misdetection. We tackle this
problem by ignoring IPI blocks which have been affected by misdetection
during witness generation.

3.3.2.2 Adversarial Model

The adversarial model used is based on that described originally in Deliver-
able D2.1 and recounted here with specific references to the problem cur-
rently addressed. The goal of an adversary A is to obtain either KRI , wR

or wI such that he can either gain access to I or obtain private informa-
tion from the (secure) communication between R and I. Our protocol is
designed for an active adversary who has full control of the channel and
may eavesdrop, modify, drop and replay messages sent from R to I and vice
versa, in addition to forging his own messages. While this is a rather strong
assumption (it is unlikely that A is present during an actual emergency),
we consider IMD security important enough to assume such a worst-case
model. Despite his capabilities, A is not able to measure the IPI bits which
are used for witness generation: This assumption is supported by related
work which has shown that remote-measuring techniques are not able to
provide a statistical advantage over mere guessing [34].

3.3.2.3 Trust Establishment

We aim to establish trust between R and I through using IPIs for generating
random witnesses wR and wI , providing a basis for trust establishment. The
trust formed between R and I hinges on the assumption that wR ≈ wI iff
R is physically proximal to I (i.e., capable of touching the patient), which
is a common assumption for emergency-trust establishment [35]. Logically,
an adversary A could try to gain access to the IMD by generating a witness
wA ≈ wI using the same method as R. However, we expect that the risk of
abusing this mechanism is minimal, as: 1) It is unlikely that a patient would
not notice (or allow) A attaching a heartbeat sensor to him/her; 2) Sensors
have to be fastened steadily to the patient for successful trust establishment,
as there would otherwise be a significant disparity between the generated
witnesses; and 3) In the unlikely event that A can satisfy both (1) and (2),
it is reasonable to expect that A would have easier methods of harming the
patient (e.g., physically attack the patient or use social engineering to obtain
his password). That is, IMD security may not be deemed as the most crucial
component for the patient’s well-being in such cases.

The performance and overheads of our key-exchange protocol and the
size of wR and wI depend largely on the expected inter-witness disparity,
as a larger disparity requires stronger error-correcting codes for fuzzy com-

www.sharcs-project.eu 40 January 2, 2017

3.3. SECURE COMMUNICATION

mitment. To understand some of our design choices, we first exemplify the
two causes of inter-witness disparity using Figure 3.14, which depicts the
IPIs generated by R and I. Also highlighted in the figure are the following:
1) V ARIS: When R and I obtain an IPI from the same heartbeats, a minor
disparity between these IPIs occurs as R and I detect each heartbeat with
slight variations due to inter-sensor variability V ARIS; and 2) Heartbeat
misdetection: It can happen that R or I fails to detect a heartbeat (or detects
a fake heartbeat) due to, for example, movement artifacts or imperfections
in the detection algorithm. In the example of Figure 3.14, R has failed to
detect heartbeat 4, resulting in the following effects: i) R incorrectly bases
IPI(3,4) on heartbeats 3-5, resulting in a value considerably different than its
other IPIs and I ’s IPI(3,4); and ii) The remaining IPIs used for witnesses gen-
eration are misaligned as R has generated one less IPI using heartbeats 3-5
than I. That is, heartbeat misdetection introduces order variance between
wR and wI .

IPIs I

IPIs R

215 213 248 235 201 199 198

216 211 485 199 199 199 213

HB # 1 2 3 4 5 6 7 8 9

VARIS

misalignmenthigh IPI value

Figure 3.14: Illustration of inter-witness disparity, showing the IPIs obtained
by R and I (in decimals) and annotations highlighting the disparity. In this
example, R does not detect heartbeat 4.

Fuzzy commitment can tolerate the random-bit permutations stemming
from V ARIS effectively using error correcting codes, such as BCH codes [22].
A known limitation of the scheme, however, is that it is not capable of deal-
ing with order variance which, in our case, is introduced by heartbeat mis-
detection5. As such, we have to ensure that R and I use the same IPIs for
witness generation. To do so, we opt for having R and I first determine
if a misdetection has occurred in a block of IPIs during witness generation
and, if so, both entities replace the entire block for freshly obtained IPIs.
While this process is further explained in Section 3.3.2.4, we first introduce
here a proof-of-concept classification algorithm used by R and I to identify
misdetections.

Our classification algorithm in Listing 3.1 essentially employs a double-
thresholding mechanism to distinguish correct and misdetected IPIs by con-

5We could opt to use an order-invariant derivative of fuzzy commitment (called fuzzy
vault [21]). However, as shown in [40], this scheme would be too resource-heavy for IMD
application.

www.sharcs-project.eu 41 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

Listing 3.1: Heartbeat-classification algorithm (pseudo code).
Input: IPIb #block of IPIs

Th_l , Th_u #classification thresholds

Output: m #misdetection flag

m = 0;

IPIm = mean(IPIb);

for i = 0: len(IPIb):

if IPIb[i] < IPIm * Th_l or IPIb[i] > IPIm * Th_u:

m = 1;

return;

Commit

Reader R IMD I

mI

IDI

EKRI (IDI)

IDR

{{KRI }}wi, h(KRI)

mR Witness
generation

wI

KRI
Decommit

Witness
generation

wR

h(KRI’)
h(KRI)

=
?

y

“FAIL”

=
?DKRI (IDI)

IDI

n

y

n

Figure 3.15: Key-exchange protocol.

sidering the substantially higher (or lower) IPI values resulting from it. The
algorithm first calculates the mean of a block of IPIs and subsequently com-
pares each IPI to this mean value and two thresholds, lower threshold Thl
(Thl < 1) and upper threshold Thu (Thu > 1), to distinguish between de-
tecting a fake and missing a real heartbeat, respectively. If a block of IPIs
contains a misdetection for either R or I, they respectively set their misde-
tection flag (mR or mI , resp.) to 1. We expect that the simplicity of our
algorithm favors the tight energy budget of IMDs. It should be noted that
our algorithm – as with any classification algorithm – may result in both
a number of false positives (i.e., a regular heartbeat is considered misde-
tected) and false negatives (i.e., a misdetection is not identified). These
classification rates are a function of the IPI-block size, Thl and Thu.

www.sharcs-project.eu 42 January 2, 2017

3.3. SECURE COMMUNICATION

3.3.2.4 Protocol Description

Our key-exchange protocol is depicted in Figure 3.15 and comprises the
following four steps:

S1. Initialization: R and I initiate the key-exchange session. R first sends
its identifier to start the session with I (R → I : IDR) after which I
replies with its own identifier (I → R : IDI). These identifiers are
used for binding the key KRI to identifiers IDI and IDR upon suc-
cessful exchange, allowing R and I to communicate using Is regular
security protocol.

S2. Witness generation: R and I generate witnesses wR and wI from their
respective heartbeat measurements following the methodology describ-
ed in Section 3.3.2.3. To generate these witnesses, R and I simulta-
neously obtain a block of IPIs and classify if a misdetection has oc-
curred: If so, they set their respective misdetection flags (mR and
mI) to 1. These flags are subsequently exchanged (R → I : mR and
I → R : mI) and, if a misdetection has occurred (mR ∨mI = 1), both
entities replace the block with fresh IPIs. R and I resynchronize after
each block (using mR and mI) to prevent a misdetection from affect-
ing multiple blocks [37]. This process is repeated until enough IPIs are
obtained to generate wR and wI . While wR and wI are transmitted in
plain text, this does not provide an adversary A with an advantage.
First, overhearing mI or mR does not provide any useful information,
except that a certain block of IPIs is not used. As this block is replaced
with fresh and random IPI bits, the secrecy of the fuzzy commitment
is not threatened. Secondly, if A were to modify, drop, replay, delay
or insert its own mR and/or mI , the net effect would be that R and I
either do not agree on which IPIs to use (i.e., introduce order variance
between wR and wI) or continuously drop all IPIs. The security of our
protocol hinges on the randomness of wI , which is not affected by us-
ing different IPIs from I and/or R [37]. As such, malicious mR or mI

do not provide A with any insights into wR, wI or KRI (exchanged in
the following protocol step).

S3. Fuzzy commitment: I generates a random secret key KRI and com-
mits it using wI and fuzzy commitment. As both KRI and wI are fresh
and random, fuzzy commitment facilitates perfect secrecy [52]. This
commitment is sent to R (I → R :< {{KRI}}wI , h(KRI) >). R subse-
quently decommits K ′RI using wI and the inverse process of commit-
ment. As in the original fuzzy commitment scheme, we employ BCH
codes as they provide strong error-correcting capabilities to random
the bit flips resulting from V ARIS [22].

www.sharcs-project.eu 43 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

S4. Key validation: To validate the correct decommitment of KRI , R com-
putes its own hash h(K ′RI) and compares it to the hash received from

I in its fuzzy commitment (h(KRI)
?
= h(K ′RI)). If these hashes match,

R encrypts IDI using KRI and its regular cipher and sends this to I
(R → I :< EKRI

(IDI) >). The security of this step assumes that A
cannot obtain KRI from this encryption even if IDI is known, which
is the case for modern ciphers. I subsequently decrypts IDI using
its cipher and KRI and, if the decrypted DKRI

(IDI) = IDI , key
exchange is a success. Alternatively, if either h(KRI) 6= h(K ′RI) or
DKRI

(IDI) 6= IDI , the key exchange has failed. This step guarantees
mutual trust, as both R and I (implicitly) validate if wR ≈ wI .

3.3.2.5 Protocol Implementation Aspects

In line with the security protocol proposed in Section 3.3.1, IDR and IDI

are chosen to be 96 bits long. As KRI is used in subsequent communication
between R and I using I ’s regular protocol, it has to adhere to the key-length
requirements of I ’s regular cipher. We consider the PRESENT-80 cipher well-
suited for IMD cryptography, given its minimal energy footprint [8] and, as
such, KRI is chosen to be 80 bits long. Moreover, as PRESENT-80 has a
block size of 64 bits, the encryption EKRI

(IDI) uses the 64 least-significant
bits of IDI . The expected disparity between the IPIs obtained by R and
I determines the length of the witnesses BCH codes in fuzzy commitment.
Our proposed protocol uses 3 bits per IPI to generate 204-bit long witnesses
and (204, 80, 37) BCH codes (a shortened version of the (255, 131, 37)
BCH code). That is, the 80-bit long KRI is encoded using 204 bits, which
creates a Hamming-distance of 37 bits between code words. Finally, for
hashing KRI we rely on SHA-3, a recommended, collusion-resistant hash
function [31], which emits a 224-bit long hash. This hash sufficiently pro-
tects the secrecy of KRI , given its size and randomness.

3.3.3 FPGA-based NIDS

Server farms hosting Cloud computing require to filter incoming traffic and
detect malicious incoming packets. The most effective mechanism for net-
work monitoring is Network Intrusion Detection Systems (NIDS) [28]. The
main task of a NIDS is to defend the underlying cloud network from net-
work intrusions by detecting an attack as soon as possible based on some
predefined signature rules and raising an alarm to the system administrator.

An NIDS uses a set of signature rules, each one describing a network
packet suspicious for an network intrusion. Each rule describes the header
and/or payload content of a malicious packet. Every incoming network
packet is compared against each NIDS rule and in case of a match it is
reported. NIDS processing is highly parallel as each incoming packet is

www.sharcs-project.eu 44 January 2, 2017

3.3. SECURE COMMUNICATION

compared against every NIDS rule. It further needs to be performed in
line rates in order to scan all incoming traffic. Finally, the latency of the
processing is important in order to report detected intrusions as soon as
possible.

The hardware specifications of the FPGA-based NIDS is as listed below.

Figure 3.16: Maxeler DFE based NIDS

• Implementation platform & NIDS kernels: Our NIDS design, shown
in Figure 3.16, is targeting a Maxeler-based Data Flow Engine (DFE)
which uses reconfigurable hardware (an Field Programmable Gate Ar-
ray (FPGA) device) with a direct network link operating at a line rate
of 10Gbps. The DFE will be designed to have a manager instance that
orchestrates the data movement between the different kernel (hard-
ware) blocks and will be responsible for receiving and transmitting
packets across the network interface. The two kernel blocks in the
DFE are the following:

– Header inspection kernel: This kernel compares the header de-
scription of each NIDS rule against the header of every incoming
packet and reports the matches.

www.sharcs-project.eu 45 January 2, 2017

CHAPTER 3. DESIGN SPECIFICATIONS OF THE SHARCS HARDWARE
TECHNIQUES

– Payload inspection kernel: It performs deep content inspection
checking for matches in the packets’ payload against the prede-
fined payload signatures. In particular, this kernel scans the pay-
load contents of each incoming packet searching for specific pay-
load patterns described in the NIDS rules.

In case the kernels detect a match between an incoming packet and
one or more signatures6, the system administrator is alarmed about
the attempted network intrusion.

• Low latency and high throughput: The targeted Maxeler platform
provides direct network connection to the DFE (FPGA) allowing ultra
low latency line-rate processing of 10Gbps network traffic. This is
critical for the NIDS operation as the intrusion should be detected as
soon as possible in order to lower the damage caused to the underlying
cloud network.

• Placement: As shown in Figure 3.16, the NIDS is placed in between
the firewall and the various nodes in the cloud network. This place-
ment allows the NIDS to behave like a security camera, continuously
monitoring each packet that flow to and from the cloud network and
alarming the system administrator as soon as an intrusion is detected.

• Signature-based intrusion detection: In the cloud computing use
case, signature based intrusion detection defines a set of rules, against
which the incoming traffic is compared against to detect an attack.
For example, the open source Snort rule database [41] can be used
to monitor the traffic. A rule refers to both the header as well as the
payload of the packet and can contain fields that can specify the pro-
tocol, IP address, port and content of a suspicious packet. Header
rules check for equality (or range) in numerical fields. More computa-
tionally intensive is the text search of the packet payload against hun-
dreds of patterns that must be performed at wire-speed [42]. DFEs are
well suited for this application as the ultra fine grained and pipelined
parallelism of the data flow architecture can be exploited to achieve
high throughput. Moreover, the tight integration of network inter-
face, memory, and compute resources may support low latency net-
work processing.

6A signature rule matches, when both its header and payload part(s) of the rule have
matched for a particular incoming network packet.

www.sharcs-project.eu 46 January 2, 2017

A
Appendix

A.1 IPI-Based Random-Number Generation

IPIs are a cardiovascular biometric which is defined as the time difference
between two consecutive heartbeats. Most studies conclude that the 4 least-
significant bits (LSBs) of each IPI can be considered random [34, 37, 51,
38, 39]. Despite this randomness, R and I may both obtain the same
IPI bits (with some consistency – minor disparities are common in bio-
metrics) iff they simultaneously measure the same heartbeats on the same
body. These characteristics allow R and I to use IPIs for generating ran-
dom witnesses wR and wI (where wR ≈ wI), providing a basis for trust
establishment. The most common way of generating these witnesses (used
in [5, 33, 37, 38, 39]) is depicted in Figure A.1: First, a number of heartbeats
are detected from a cardiac biosignal and the time interval between consec-
utive heartbeats is calculated to form IPIs, i.e., IPI(i,i+1) = beati+1 − beati.
A predefined set of (random) bits is selected from each IPI: The most-
significant bits (MSBs) are typically discarded due to their inherent low
entropy, while the least significant bits (LSBs) may be discarded due to
inter-sensor variability (V ARIS

1). Gray coding is applied to the selected
IPI bits in order to strengthen them against V ARIS (reducing the number
of bits affected by a small disparity between IPIs). Finally, the bits from
consecutive IPIs are Gray-coded to increase information robustness and are
concatenated to form a so-called witness.

1Assuming precise and non-drifting sensors, V ARIS is the variance between two different
sensor measurements of cardiac biosignals, caused by the variable pulse-transition time of
ventricular contraction (heartbeats) to the rest of the body due to, for example, motion and
pressure differences.

47

APPENDIX A. APPENDIX

V
o
lt
ag
e

Time

1 0 0 1 0 1 1 0

1 1 1 0 0 1 0 1

1 0 0 1 0 0 1 1

1 1 0 1 1 0 0 0

IPI(1,2)

IPI(2,3)

IPI(3,4)

IPI(4,5)

IPI12

MSB

w 010 011 001 110

Gray
coding

1 2 3 4 5

LSB

Figure A.1: Witness generation.

www.sharcs-project.eu 48 January 2, 2017

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity. In Proceedings of the 12th ACM conference on Computer and
communications security, pages 340–353. ACM, 2005.

[2] Accountability Act. Health insurance portability and accountability act
of 1996. Public Law, 104:191, 1996.

[3] P. P. Ankolekar, R. Isaac, and J. W. Bredow. Multibit error-correction
methods for latency-constrained flash memory systems. IEEE Transac-
tions on Device and Materials Reliability, 10(1):33–39, March 2010.

[4] S.-D. Bao et al. A novel key distribution of body area networks for
telemedicine. In IEEE BioCas, pages 1–17, 2004.

[5] S.-D. Bao et al. Using the timing information of heartbeats as an entity
identifier to secure body sensor network. T-ITB, pp. 772-779, 12(6),
2008.

[6] A. Bauer and J. Juerjens. Security protocols, properties, and their mon-
itoring. In Proceedings of the fourth international workshop on Software
engineering for secure systems, SESS ’08, pages 33–40, New York, NY,
USA, 2008. ACM.

[7] E. A. Bogari, P. Zavarsky, D. Lindskog, and R. Ruhl. An analysis of
security weaknesses in the evolution of RFID enabled passport. In
Internet Security (WorldCIS), 2012 World Congress on, pages 158–166,
Ontario, Canada, June 2012.

[8] A. Bogdanov et al. Present: An ultra-lightweight block cipher. In CHES,
pages 450–466. Springer, 2007.

49

BIBLIOGRAPHY

[9] C. Boyd and A. Mathuria. Protocols for Authentication and Key Es-
tablishment. Springer Publishing Company, Incorporated, 3rd edition,
2010.

[10] F. M. Bui and D. Hatzinakos. Biometric methods for secure communi-
cations in body sensor networks: resource-efficient key management
and signal-level data scrambling. EURASIP Journal on Advances in Sig-
nal Processing, 2008:109, 2008.

[11] S. Cha and H. Yoon. Efficient implementation of single error correc-
tion and double error detection code with check bit pre-computation
for memories. JSTS: Journal of Semiconductor Technology and Science,
pages 418–425, March 2012.

[12] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis.
Hcfi: Hardware-enforced control-flow integrity. In Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
pages 38–49. ACM, 2016.

[13] E. Directive. 95/46/EC of the European Parliament and of the Council
of 24 October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data.
Official Journal of the EC, 23(6), 1995.

[14] EPCglobal Inc. Class-1 Generation-2 UHF RFID protocol for communi-
cations at 860 MHz - 960 MHz. Standard, v. 1.2.0, 2008.

[15] K. Fernald, T. Cook, T. M. III, and J. Paulos. A microprocessor-based
implantable telemetry system. In IEEE Computer, volume 24, pages
23–30, Mar. 1991.

[16] D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel.
Security and Privacy for Implantable Medical Devices. IEEE Pervasive
Computing, 7:30–39, January 2008.

[17] C. Harrigal and R. Walters. The development of a microprocessor
controlled implantable device. In IEEE Proceedings of the 1990 Six-
teenth Annual Northeast Bioengineering Conference, pages 137–138,
Mar. 1990.

[18] ISO. Information technology – Security techniques – Entity authentica-
tion – Part 2: Mechanisms using symmetric encipherment algorithms,
ISO/IEC 9798-2:2008. International Standard, 2nd ed., 1999.

[19] E. Jalilian, L. Turner, G. Jullien, and M. Mitchev. Design of an im-
plantable multichannel neurostimulator for restoring impaired gas-
trointestinal motility. In Proceedings of the 9th Annual Conference of
the International FES Society, Sept. 2004.

www.sharcs-project.eu 50 January 2, 2017

BIBLIOGRAPHY

[20] A. Juels. RFID Security and Privacy: A Research Survey. IEEE Journal
on Selected Areas in Communications, 24(2):381–394, February 2006.

[21] A. Juels and M. Sudan. A fuzzy vault scheme. Designs, Codes and
Cryptography, 38(2):237–257, 2006.

[22] A. Juels and M. Wattenberg. A fuzzy commitment scheme. In ACM
CCS, pages 28–36, 1999.

[23] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe. Multi-bit error
tolerant caches using two-dimensional error coding. In Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 40, pages 197–209, 2007.

[24] J. Kirk. Pacemaker hack can deliver deadly 830-volt jolt. Computer-
world, 17, 2012.

[25] J. Lee, K. Kapitanova, and S. H. Son. The price of security in wireless
sensor networks. Computer Networks, 54(17):2967–2978, 2010.

[26] S. D. Martin Feldhofer and J. Wolkerstorfer. Strong authentication for
RFID systems using the AES algorithm. In Cryptographic Hardware and
Embedded-Systems, pages 85–99. Springer, 2004.

[27] F. Miao et al. A modified fuzzy vault scheme for biometrics-based body
sensor networks security. In IEEE GLOBECOM, pages 1–5, 2010.

[28] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan.
Review: A survey of intrusion detection techniques in cloud. J. Netw.
Comput. Appl., 36(1):42–57, Jan. 2013.

[29] NIST. Recommendation for block cipher modes of operation – meth-
ods and techniques , NIST special publication 800-38a. National Insti-
tute of Standards and Technology, 2001.

[30] NIST. Recommendation for block cipher modes of operation: The
CMAC mode for authentication, NIST special publication 800-38b. Na-
tional Institute of Standards and Technology, 2005.

[31] NIST. Fips 202: Sha-3 standard: Permutation-based hash and
extendable-output functions. Federal Information Processing Standards
Publication, 2015.

[32] H. Ohta and M. Matsui. A description of the misty1 encryption algo-
rithm. RFC2994, November, 2000.

[33] C. C. Poon et al. A novel biometrics method to secure wireless body
area sensor networks for telemedicine and m-health. IEEE Commun.
Mag., pages 73–81, 2006.

www.sharcs-project.eu 51 January 2, 2017

BIBLIOGRAPHY

[34] M. Rostami et al. Heart-to-heart (h2h): authentication for implanted
medical devices. In ACM CCS, pages 1099–1112, 2013.

[35] M. Rushanan et al. Sok: Security and privacy in implantable medical
devices and body area networks. Proceedings of the IEEE S&P, pages
529–539, 2014.

[36] R. M. Seepers. Implantable Medical Devices: Device security and emer-
gency access. PhD thesis, Erasmus University Medical Center, Rotter-
dam, Netherlands, December 2016.

[37] R. M. Seepers et al. Peak misdetection in heart-beat-based security
characterization and tolerance. IEEE EMBC, 2014.

[38] R. M. Seepers, C. Strydis, I. Sourdis, and C. De Zeeuw. Enhancing
heart-beat-based security for mhealth applications. IEEE journal of
Biomedical and Health Informatics (JBHI), –(-):1–9, 2015.

[39] R. M. Seepers, C. Strydis, I. Sourdis, and C. De Zeeuw. On using
a von-neumann extractor heart-beat-based security. In Security and
Privacy in Computing and Communications (TrustCom), 2015 14th IEEE
International Conference, pages 1–8. IEEE, 2015.

[40] R. M. Seepers, J. H. Weber, Z. Erkin, I. Sourdis, and C. Strydis. Secure
key-exchange protocol for implants using heartbeats. In Proceedings
of the ACM International Conference on Computing Frontiers, CF ’16,
pages 119–126, New York, NY, USA, 2016. ACM.

[41] SNORT. Snort official web site: https://www.snort.org.

[42] I. Sourdis and D. Pnevmatikatos. Fast, large-scale string match for a
10gbps fpga-based network intrusion detection system. In P. Y. K. Che-
ung and G. A. Constantinides, editors, Field Programmable Logic and
Application: 13th International Conference, FPL 2003, Lisbon, Portu-
gal, September 1-3, 2003 Proceedings, pages 880–889. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003.

[43] L. Stotts, K. Infinger, J. Babka, and D. Genzer. An 8 bit microcomputer
with analog subsystems for implantable biomedical application. In
IEEE Journal of Solid-State Circuits, pages 292–300, 1989.

[44] C. Strydis, R. M. Seepers, P. Peris-Lopez, D. Siskos, and I. Sourdis.
A system architecture, processor, and communication protocol for se-
cure implants. ACM Transactions on Architecture and Code Optimization
(TACO), 10(4):57, 2013.

[45] C. Strydis, D. Zhu, and G. Gaydadjiev. Profiling of symmetric encryp-
tion algorithms for a novel biomedical-implant architecture. In ACM

www.sharcs-project.eu 52 January 2, 2017

BIBLIOGRAPHY

International Conference on Computing Frontiers (CF’08), pages 231–
240, Ischia, Italy, 5-7 May 2008.

[46] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, and P. Dario. An
implantable telemetry platform system for in vivo monitoring of phys-
iological parameters. In IEEE Transactions on Information Technology
in Biomedicine, volume 8, pages 271–278, September 2004.

[47] T. van Deursen and S. Radomirovic. Attacks on rfid protocols. IACR
Cryptology ePrint Archive, 2008:310, 2008.

[48] L. Wang, P. Hammond, E. Johannessen, T. Tang, A. Astaras, S. Beau-
mont, A. Murray, J. Cooper, and D. Cumming. An on-chip pro-
grammable instrumentation microsystem for gastrointestinal teleme-
try applications. In Proceedings of the 26th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBS),
pages 2109–2112, San Francisco, California, USA, 1-5 September
2004.

[49] H. S. Warren. Hackers delight. 2nd., 2012.

[50] P. Wouters, M. D. Cooman, D. Lapadatu, and R. Puers. A low
power multi-sensor interface for injectable microprocessor-based an-
imal monitoring system. In Sensors and Actuators A: Physical, volume
41-42, pages 198–206, 1994.

[51] G.-H. Zhang et al. Analysis of using interpulse intervals to generate
128-bit biometric random binary sequences for securing wireless body
sensor networks. T-ITB, 16(1):176–182, 2012.

[52] G. Zheng, G. Fang, R. Shankaran, and M. A. Orgun. Encryption for
implantable medical devices using modified one-time pads. Access,
IEEE, 3:825–836, 2015.

[53] X. Zhuang, Z.-H. Wang, C.-C. Chang, and Y. Zhu. Security analysis of a
new ultra-lightweight RFID protocol and its improvement. Journal of
Information Hiding and Multimedia Signal Processing, 4(3), July 2013.

www.sharcs-project.eu 53 January 2, 2017

	Introduction
	Outline
	Connection to other SHARCS activities

	Overview of the SHARCS hardware techniques and their use in the SHARCS Systems
	Use of the SHARCS hardware techniques in the Implantable Medical Device
	Use of the SHARCS hardware techniques in the Automotive application
	Use of the SHARCS hardware techniques in the Cloud pilot

	Design specifications of the SHARCS hardware techniques
	Secure microprocessor architectures
	Instruction-Set Randomization
	Control-Flow Integrity
	SISC: customized processor for secure communication

	Secure Memory Architectures
	Encryption of shared-memory data
	Memory-Protection Unit for embedded SoCs
	Data-Integrity mechanisms
	Instruction ROM

	Secure communication
	Lightweight, secure-communication protocol
	Lightweight, Secure Key-Exchange Protocol
	FPGA-based NIDS

	Appendix
	IPI-Based Random-Number Generation

