
Secure Page Fusion with VUsion
https://www.vusec.net/projects/VUsion

Marco Oliverio
Vrije Universiteit Amsterdam

Università della Calabria

Kaveh Razavi
Vrije Universiteit Amsterdam

Herbert Bos
Vrije Universiteit Amsterdam

Cristiano Giuffrida
Vrije Universiteit Amsterdam

ABSTRACT
To reduce memory pressure, modern operating systems and
hypervisors such as Linux/KVM deploy page-level memory
fusion to merge physical memory pages with the same content
(i.e., page fusion). A write to a fused memory page triggers a
copy-on-write event that unmerges the page to preserve cor-
rect semantics. While page fusion is crucial in saving memory
in production, recent work shows significant security weak-
nesses in its current implementations. Attackers can abuse
timing side channels on the unmerge operation to leak sensi-
tive data such as randomized pointers. Additionally, they can
exploit the predictability of the merge operation to massage
physical memory for reliable Rowhammer attacks. In this pa-
per, we present VUsion, a secure page fusion system. VUsion
can stop all the existing and even new classes of attack, where
attackers leak information by side-channeling the merge oper-
ation or massage physical memory via predictable memory
reuse patterns. To mitigate information disclosure attacks, we
ensure attackers can no longer distinguish between fused and
non-fused pages. To mitigate memory massaging attacks, we
ensure fused pages are always allocated from a high-entropy
pool. Despite its secure design, our comprehensive evalua-
tion shows that VUsion retains most of the memory saving
benefits of traditional memory fusion with negligible perfor-
mance overhead while maintaining compatibility with other
advanced memory management features.

CCS CONCEPTS
• Security and privacy → Operating systems security;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5085-3/17/10.
https://doi.org/10.1145/3132747.3132781

KEYWORDS
Memory Management, Page Fusion, Side channels, Rowham-
mer

1 INTRODUCTION
On modern systems, different processes [13] or co-hosted
virtualized environments [9, 10, 16] tend to have many mem-
ory pages that store similar data. To remedy this situation,
operating systems and hypervisors perform page fusion by
periodically scanning memory to find pages with the same
content and merging them by keeping a single read-only copy.
Writing to a shared page from either party triggers an unmerge
by performing copy-on-write into a private copy. Given its
memory saving benefits, page fusion has been applied to sev-
eral classes of real-world systems, ranging from co-hosted
virtual machines (VM) [9] and containers [23] in the cloud to
desktop [13] and mobile [17] systems.

Unfortunately, existing page fusion systems are insecure.
As we shall see, attackers can abuse the unmerge operation to
build side-channel attacks to leak sensitive data, or the merge
operation to construct reliable and deterministic Rowhammer
attacks that flip bits in vulnerable memory modules. As a
result, vendors either disable page fusion by default (e.g.,
Microsoft [2] or VMWare [41]) or sacrifice security in favor
of capacity (e.g., Intel Clear Containers [23]). In contrast,
we show that it is not only possible to fuse pages securely,
but even retain its memory saving benefits and compatibility
without sacrificing performance. This is possible due to a key
observation: benefits of page fusion mostly come from idle
pages in the system. Hence, we can apply heavy-weight mech-
anisms to secure page fusion on idle pages, while preserving
performance by not fusing pages in the working set.

Attacking page fusion There are two classes of attacks that
abuse page fusion: information disclosure and physical mem-
ory massaging [37] (i.e., preparing the state of physical mem-
ory for corrupting target data using a DRAM bit flip [27]).
Known information disclosure attacks [11, 13, 25, 34, 39, 43]
abuse the slow unmerge to detect whether another copy of
a certain memory page exists in the system. Some attacks

531

https://www.vusec.net/projects/VUsion
https://doi.org/10.1145/3132747.3132781

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

even use advanced versions of the side channel to break ad-
dress space layout randomization (ASLR) in the browser from
JavaScript [13] or across VMs [11]. The recent Flip Feng Shui
attack [37], on the other hand, abuses the predictability of
the merge operation to control where sensitive data is stored
in physical memory. In cloud environments, Flip Feng Shui
allows an attacker VM to compromise a victim VM by per-
forming a Rowhammer attack on (fused) RSA public keys in
memory.

With a careful security analysis of current implementations
of page fusion, we realize that the attack surface is much
larger than previously assumed, raising even more challenges
to build secure page fusion systems. On the information dis-
closure side, it is possible to detect merge events by observing
changes in the physical memory or in the virtual memory
translation data structures, using a variety of side channels
on shared system resources (e.g., last-level cache). This al-
lows an attacker to disclose sensitive data by just reading
from memory. On the Flip Feng Shui side, it is possible to
abuse the predictability of memory reuse to perform reliable
Rowhammer attacks. This allows an attacker to mount Flip
Feng Shui even when merged pages are backed by new page
allocations. We show that while the implementation of page
fusion in Windows is protected against plain Flip Feng Shui
since new pages are allocated during merge, the attackers can
overcome this hurdle by exploiting memory reuse patterns for
fused pages.

Secure page fusion Our security analysis helps us derive a
number of design principles that, once respected, can protect
against all existing and future attacks on page fusion. To stop
an attacker from disclosing sensitive information, a secure
page fusion system should enforce the same behavior for all
pages in the system, whether they are merged or not. We call
this principle Same Behavior (SB). Every time we are making
a decision on whether to merge a page or not, we remove all
accesses to that page. The next access to this page, regardless
of its merging status, results in a page fault. To stop Flip Feng
Shui, we should always allocate a random physical page for
backing the page that is a candidate for merging. We call this
principle Randomized Allocation (RA).

While RA can be implemented with negligible overhead,
SB can be expensive in terms of performance due to the in-
creased number of page faults and can reduce fusion benefits
since memory pages need to be unmerged even when read.
Fortunately, neither is a problem in practice: a simple working
set estimation can restrict page fusion to idle pages and dra-
matically reduce the additional number of page faults. This
strategy has a small impact on memory savings, since, as
we show, most benefits of page fusion come from idle pages.
As a result, VUsion, our secure page fusion system built on
top of the Linux kernel, provides similar benefits in terms

of saving memory with minimal performance overhead (e.g.,
2.7% on SPEC CPU2006 and 0.4% on memcached) com-
pared to the default insecure implementation in the Linux
kernel. We further address the non-trivial challenge of keep-
ing VUsion compatible with popular memory management
features of the Linux kernel such as transparent huge pages
(THPs) [8, 12, 18, 29, 42].

Contributions We make the following contributions:

• The first study of page fusion in recent Windows oper-
ating systems, which reveals a different design than the
widely studied Kernel Same-page Merging (KSM) in
Linux (§2).

• The first study of previously known attack vectors
on page fusion complemented by new attack vectors,
which we use to draw up principles for secure page
fusion (§4 and §5).

• The design and implementation of VUsion, a Linux-
based secure page fusion system which follows these
principles (§6 and §7).

• A comprehensive evaluation of security, performance
and memory savings of VUsion when compared to
KSM. Our results demonstrate that VUsion’s design
improves the security of KSM and only marginally
reduces memory savings while preserving performance
(§9).

2 PAGE FUSION
Page fusion is often used in situations where it is not possi-
ble to directly share memory that originates from the same
content. For example, while it is possible to share pages for
libraries across different processes inside a VM, the same is
not possible across VMs. Hence, to find memory pages with
the same content, a page fusion system should periodically
scan the memory.

Once pages with duplicate content are found, only one copy
is kept, and all the page-table entries (PTEs) of the sharing
parties are updated to point to this copy without the write
permission bit (i.e., they are fused). The duplicates can now
be returned to the system. At any point in time, one party may
decide to write to this (now) fused page, resulting in a page
fault. To preserve the correct behavior, the system handles
this situation with copy-on-write: a new page is allocated and
filled with the content from the shared copy before updating
the PTE of the writing party to this new page with the write
permission bit so that the write can continue.

We now study how these steps are implemented in practice
using two popular implementations in the Linux and Windows
operating systems.

532

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

2.1 Linux Kernel Same-page Merging
The Linux kernel fuses memory pages in its KSM subsystem.
KSM is opt-in and user processes that want page fusion should
inform KSM via an madvise system call. The Kernel Vir-
tual Machine (KVM) is a prime user of KSM and co-hosted
virtualized environments in the cloud are an important target.

Scanning. Whenever a process registers a chunk of its vir-
tual memory to KSM, KSM first locates all virtual memory
areas (VMAs) associated to this chunk. In Linux, VMAs are
contiguous areas of virtual memory and the (virtual) memory
pages that belong to the same VMA share certain properties
such as permissions. After finding the VMAs, KSM adds
them to a list containing all candidate VMAs for fusion. KSM
scans this list in a round-robin fashion. Every T milliseconds,
the KSM thread wakes up and scans N virtual memory pages
(belonging to one or more VMAs). T and N are configurable,
for example on the Linux kernel version 4.10.10, the default
values are N = 100 and T = 20, i.e., 5000 pages are scanned
per second. The pages are merged in-line with the scan.

Merging. To detect sharing opportunities, KSM uses two
red-black trees, called stable and unstable, that use the con-
tents of the pages to balance themselves. The stable tree
contains fused pages that are made read-only and are (often)
shared between multiple parties. The pages in the unstable
tree, however, are not protected against writes and their con-
tents may change. Hence, the tree is not always perfectly
balanced, but given that every page insertion and deletion
triggers rebalancing, the tree mostly maintains its balance [9].

Figure 1 shows how KSM finds duplicate pages in the
registered VMAs. For each page that is scanned, it is first
checked whether another page with the same content already
exists in the stable tree. If that is the case, then the page
is merged by updating the PTE of the page that is being
scanned to point to the page in the stable tree without the
write permission bit and releasing the page back to the system
(Figure 1-A). If that is not the case, KSM matches the page
against the unstable tree. If a match is found, it makes the page
read-only and puts it in the stable tree. It also removes the
match from the unstable tree and makes it point to the stable
tree page, similar to the previous case (Figure 1-B). Finally,
if KSM finds no match in either tree, it puts the page in the
unstable tree (Figure 1-C). Note that merging implies that the
physical memory of one of the pages is used for backing the
shared copy between various (distrusting) parties.

Unmerging. The pages in the stable tree are reference-
counted (very much like any page in Linux). As soon as
one party writes to a write-protected page, a copy-on-write
event triggers, as mentioned earlier. This copy-on-write event
drops the reference count by one. Only if the count reaches
zero, the system removes the original page from the stable

A D

C E

B

E G

H

F

Stable
Tree

Unstable
Tree

C

Stable
Tree

Unstable
Tree

(A)

A D

C E

B

E H

G

F

Stable
Tree

Unstable
Tree

A D

C E

B

E H

G

F

Stable
Tree

Unstable
Tree

(B)

G

I

(C)

CC
I

GG

A D

C E

B

E G

H

F

Figure 1: Modifications to the KSM red-black trees dur-
ing merging. Blue circles are the pages that are being con-
sidered for fusion.

tree, which means that as long as there is even a single user,
that page remains in the stable tree.

2.2 Windows Page Fusion
Microsoft turned page fusion on by default for Windows
8.1 and later releases. Duplicate pages generated by related
processes in the absence of fork semantics are a primary
target of page fusion on Windows systems. We have reverse
engineered parts of the Windows kernel to gain insight into
the mechanisms that Windows Page Fusion (WPF) uses for
this purpose. Note that Microsoft recently disabled WPF after
the Dedup Est Machina attack [13], at the expense of memory
wastage. However, it is still important to study a different
(insecure) design other than KSM to derive the necessary key
principles for secure memory fusion.

Scanning. Compared to its Linux counterpart, WPF has
no opt-in mechanism that allows user-space applications to
register which memory pages can be merged. Instead, it scans
all anonymous physical memory pages every 15 minutes and
tries to merge as many pages as possible. WPF stores the
metadata about the already merged pages in multiple AVL
trees that have the same functionality as the KSM’s stable tree.
During each scan, WPF computes the hash of every physical
page that is a candidate for merging in a list that is sorted by
the hash value.

533

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

AVL
Tree 1

Hash 1

Page 1

Hash 1

Page 2

Hash 2

Page 3

Hash 3

Page 4

Hash 3

Page 5

Hash 4

Page 6

...

...

Process 1

Process 3Process 2

Virt Page 1 ...Virt Page 2 Virt Page 3

AVL
Tree 2

...

Hash 1 Hash 3

Hash 2 Hash 4

Hash 5

Figure 2: WPF’s sorted list of hashes and processes.

Merging. With the sorted list of hashes, it is now time
for WPF to start merging physical pages. For each physi-
cal page, through a reverse mapping, WPF determines the
process that owns the page. Each process will have a list
of these physical pages, sorted by their corresponding vir-
tual addresses. These processes are inserted into a tree that
is sorted by their memory management struct pointer (i.e.,
_EPROCESS->Vm). Figure 2 visualizes the relation between
these structures.

WPF then performs the actual merging on a per-process
basis. For each process, it first examines the content of each
physical page in the process’s list. If a page with the same
content has been previously fused, then WPF will find it in
one of the AVL trees. WPF then updates the corresponding
PTE to point to the page in the AVL tree and returns the
physical page back to the system. For pages that have not
been previously fused, WPF checks whether there are pages
with the same content. In case there are some, WPF adds a
copy to one of the AVL trees, updates the relevant PTEs and
returns the duplicate pages back to the system.

An important difference between KSM and WPF is that
WPF allocates new physical pages for insertion into the AVL
trees (i.e, the physical pages of the sharing parties are not used
to back the fused page). Specifically, it allocates new pages
using a specialized linear allocator to improve performance
by not contending for the system-wide page allocator. This
allocator scans the physical address space from the end and
tries to reserve as many pages as necessary. If the allocator
finds a page that is currently in use, it tries to steal this page
from the owner. As a result, the allocated memory will be
mostly contiguous, starting from the end of the physical ad-
dress space. While this mechanism leads to some uncertainty

in the selected page during a merge operation, we later show
this design is still vulnerable to Flip Feng Shui.

Unmerging. Unmerging is performed similar to KSM using
copy-on-write.

3 THREAT MODEL
We assume a strong threat model in line with prior work
in the area [11, 13, 37], where an attacker can (1) directly
interact with the page fusion system by crafting memory
pages with her chosen contents, and (2) trigger bit flips using
the Rowhammer vulnerability or other potentially exploitable
reliability issues [15, 26]. In case page fusion is applied inside
the OS, the attacker can remotely create memory pages with
arbitrary contents in a malicious JavaScript application and
in the case that page fusion is applied in a cloud setting,
the attacker executing in a malicious VM can directly create
arbitrary memory pages. The attacker pursues one of the
following two goals:

• Information disclosure: abuse timing side channels in-
duced by page fusion to detect fused pages in the system
and disclose secrets.

• Flip Feng Shui: abuse physical memory massaging
primitives induced by page fusion to land a target of in-
terest into a chosen vulnerable physical page and mount
Flip Feng Shui attacks.

Next, we describe how these attacks can be mounted in
practice.

4 KNOWN ATTACK VECTORS
We now describe how an attacker can exploit known page
fusion issues in order to achieve the goals mentioned in our
threat model.

4.1 Information Disclosure
Existing information disclosure attacks based on page fusion
are unmerge-based. They exploit timing side channels intro-
duced by unmerge (or copy-on-write) events in traditional
page fusion systems.

Writing to a merged page will trigger a copy-on-write event
which is measurably slower than a normal write. The attacker
can use this timing difference as a side channel to tell whether
a page exists in the victim. In the past, researchers used this
side channel to fingerprint applications, libraries, operating
systems and to build covert channels [25, 34, 39, 43].

The CAIN [11] attack brute-forces pointers of other
VMs randomized by Address Space Layout Randomization
(ASLR) [35] by creating many guesses for possible pointers
and checking which guess gets shared with the victim VM.
Brute-forcing high-entropy data in this way requires a large
amount of memory and becomes noisy in a Web browser.

534

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

Dedup Est Machina [13] shows that it is possible to leak high-
entropy secrets in the browser by controlling the alignment of
the secret, partially overwriting the secret with known data,
or engaging in a birthday attack. The first two techniques
allow for leaking only a part of the secret in the first fusion
pass. Once a part of the secret is known, it is possible to leak
another part in a subsequent fusion pass. The birthday attack
relies on generating many secrets in the target process (in this
case a JavaScript runtime) to increase the chance of guessing
one of them.

These techniques show that page fusion can act as a weird
machine [14] in the hands of an attacker able to time unmerge
events for reading secret information from a victim process
or VM.

4.2 Flip Feng Shui
Existing Flip Feng Shui attacks based on page fusion are
merge-based. They exploit physical memory massaging ca-
pabilities introduced by merge events to land sensitive infor-
mation in a vulnerable memory page and trigger hardware
bit flips to corrupt it. Existing attacks of this kind are based
on the DRAM Rowhammer hardware vulnerability. We now
briefly provide some background information on how Flip
Feng Shui triggers memory corruption using Rowhammer.
We refer interested readers to the original Flip Feng Shui
article for more information [37] .

DRAM architecture. Memory is internally organized in
rows. Depending on the DRAM architecture, each row can
span a number of pages. The rows themselves consist of
memory cells. Each cell is made out of a capacitor and a
transistor. The transistor controls whether the cell is being
read or written into and the capacitor stores the actual one
bit of data. Capacitors lose charge over time and if enough
charge is lost, the stored data will be lost. To avoid this, the
memory chip periodically refreshes the cells in each row.

Every time the CPU needs to read data from memory, the
memory chip selects the corresponding row and loads it into
the row buffer. The row buffer acts as a cache for rows, so
the CPU can keep reading from it as long as the requested
addresses belong to the same row. Similar to refreshing, writ-
ing the row from the row buffer back (before opening another
row) recharges the capacitors.

Rowhammer. Kim et al. [27] noticed that if two rows (i.e.,
aggressor rows) are activated in succession many times within
a refresh interval (e.g., 64 ms), some bits that are in adjacent
rows (i.e., victim rows) to these aggressor rows will start to
flip. This is because a small charge leaks from cells in the
victim rows every time aggressor rows are loaded into the
row buffer and if this happens fast enough between refresh
intervals, enough charge will leak from some cells in the

victim rows. This causes the value of the high bit to switch to
a low bit which is observed as a bit flip from the perspective
of the CPU. Reading from memory in this fashion with the
aim of triggering bit flips has been dubbed as Rowhammer. A
variant of Rowhammer where the aggressor rows are one row
apart, called double-sided Rowhammer, is known to trigger
more bit flips reliably in the victim row that is in the middle.

Exploitation. Being able to change memory without having
control over it has strong security implications. Recent studies
show that it is possible to abuse these bit flips to escalate
privilege by flipping bits in the PTEs [38, 40] or escape the
JavaScript sandbox by flipping bits in data pointers [13]. The
Flip Feng Shui attack [37] shows that it is possible to reliably
circumvent the strong hardware-enforced virtual machine
abstraction using Rowhammer and the merge operation of
page fusion.

To mount a Flip Feng Shui attack, the attacker VM first
finds memory cells that are susceptible to exploitable Row-
hammer bit flips in the physical memory that backs her VM.
At this point, the attacker needs to force the system to store the
sensitive data of a victim VM (e.g., cryptographic keys) on the
physical page with the exploitable bit flip. Page fusion makes
this step extremely easy: in the case of KSM, for example, the
physical memory of one the sharing parties is chosen to back
the merged page. Hence, if attackers want to corrupt a page in
the victim, all they need to do is write that page content on one
of their own pages that is vulnerable to Rowhammer bit flips.
If KSM chooses the attacker’s physical page, then the victim
page gets corrupted when the attacker triggers Rowhammer.
The last step essentially breaks the copy-on-write semantics
necessary for safe and correct behavior of page fusion.

Flip Feng Shui shows that page fusion can act as a physical
memory massaging primitive in the hands of attackers, mak-
ing it possible for them to control which physical memory
pages should be used to back sensitive data through merge
events. In turn, this allows them to reliably corrupt sensitive
information from a victim process or VM.

5 NEW ATTACK VECTORS
In this section, we describe two new classes of advanced at-
tack vectors against page fusion. The first class targets merge
events in page fusion to mount information disclosure attacks.
The second class targets reuse properties of page fusion to
mount Flip Feng Shui attacks. Along with the attack vectors
detailed earlier, they help us derive design principles for se-
cure page fusion that we adhered to in the implementation of
VUsion.

5.1 Information Disclosure
Traditional page fusion is characterized by well-defined merge
and unmerge events. Existing attacks exploit copy-on-write

535

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

Attack Issue Abused mechanism Attacker operation(s) Mitigation

Copy-on-write [11, 13] Slow write Unmerge Write SB
Page color (new) Physical address changes Merge Read or fetch SB
Page sharing (new) Sharing changes Merge Read or fetch SB
Translation (new) Translation changes Merge MMU ops SB
Flip Feng Shui [37] Predictable merge Merge Memory massaging RA
Reuse-based Flip Feng Shui (new) Predictable reuse Reuse Memory massaging RA

Table 1: Summary of attacks against page fusion and how design principles used in VUsion mitigate them.

side channels associated with unmerge events, but we now
show an attacker can also exploit several timing side channels
associated with merge events to detect fused pages without
writing to these pages.

Page color changes. Page colors refer to how physical
pages map on cache sets such as those of the last-level cache
(LLC). For example, the Intel Xeon E3-1240 v5 processor
used in our evaluation partitions its 8 MB LLC into 8192
cache sets of 16 cache lines of 64 bytes each, and each 4 KB
page covers 64 cache lines in 64 cache sets. If the first cache
lines of two distinct physical pages share the same cache set,
the other 63 cache lines are also guaranteed to land on the
same cache sets as well. This allows us to color different
physical memory pages in the system only based on their first
cache line. For example, our Intel Xeon E3-1240 v5 processor
has 8192/64 = 128 different page colors.

To color a page, we first build eviction sets for all possi-
ble colors in the system. An eviction set is a sequence of
memory addresses that all map to the same cache set and
“covers” the cache set completely [32]. Thus, by accessing all
the addresses in the eviction set, we clear out all other data
from the corresponding cache set. Using a PRIME+PROBE
attack [30, 33], it is now possible to determine the current
color of a page. The attacker first primes a certain color C by
accessing its eviction set. After that, the attacker reads from
the target page. During the probe phase, if accessing the evic-
tion set for C is slow, it means that the target page is of color
C. By waiting for a page fusion pass to occur, the attacker can
detect whether a target page has been fused if its color is no
longer C. This attack assumes that a new page is allocated to
back the shared copy (e.g., WPF) and is successful if the new
page has a different color. That is Psuccess = Ct−1

Ct
where

Ct is the total number of colors. For example, in our testbed,
Psuccess =

128−1
128 = 0.99. Our implementation of this attack

can find eviction sets for all colors in a few minutes and detect
changes in the color after a fusion pass.

Page sharing changes. It is tempting to think that if we
always randomize the physical location of a page considered
for fusion (regardless of a merge), then allowing reads stops
information disclosure while conserving performance and
benefits of page fusion. Unfortunately, this design is still

 510500

 511000

 511500

 512000

 512500

 513000

 0 10000 20000 30000 40000 50000 60000 70000
P
h
y
si

ca
l
fr

a
m

e
 n

u
m

b
e
r

Virtual page frame offset

First deduplication pass
Second deduplication pass

 512300

 512400

 512500

 512600

 512700

 512800

 512900

 513000

 61000 62000 63000 64000 65000 66000 67000 68000

Figure 3: Ideal physical memory massaging in WPF by
exploiting the deterministic behavior of page allocation
during page fusion passes.

insecure since attackers can detect whether pages are fused
over shared resources. An attack over the LLC is similar in
spirit to a 1-bit version of FLUSH+RELOAD [44]. We first
flush the target page from the cache by either executing a
cache flush instruction or accessing a cache eviction set (i.e.,
FLUSH). Next, we make the victim access the secret page for
which we want to check whether it is merged. Finally, we
access the target page again and measure how long it takes
(i.e., RELOAD). If the access is slow, it means that the data was
not in the cache which implies that the victim did not access
the page. If, on the other hand, the access is fast, it means that
the victim has accessed the exact same physical location as
the attack, suggesting that a merge event has occurred as a
result of page fusion.

Translation changes. Finally, it is also possible for an at-
tacker to detect a merge event indirectly, by observing changes
in the behavior of pages that are physically adjacent to the
target page. For example, KSM breaks a huge page when
merging a 4 KB page inside of it. This means that the other
adjacent pages that make up the huge page now require an
additional page table look up for the last translation level. As
our recent AnC attack shows [19], attackers can easily ob-
serve the additional page table lookup in the LLC and detect
a merge event of the target page.

536

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

5.2 Flip Feng Shui
At the physical memory management level, page fusion sys-
tems either merge two duplicate physical pages into one (and
discard the other), as done on Linux, or allocate a third physi-
cal page by reusing memory from a dedicated pool of pages
to improve performance. Existing attacks exploit physical
memory massaging capabilities associated with the merge
behavior, but we now show that an attacker can also perform
memory massaging by exploiting reuse behavior.

Our first attempt at reproducing Flip Feng Shui on top of
WPF failed. This was due to the fact that Windows allocates a
new page when updating its stable AVL trees as discussed in
§2.2. This means that memory massaging is no longer reliable.
At this point, we started looking into memory reuse patterns
during page fusion. Interestingly, we found that the reuse
behavior of WPF provides much better predictability than that
of the standard system physical page allocator, encouraging
fusion-based memory massaging rather than a system-wide
attack (e.g., [40]).

Given that WPF merges all possible candidates in one
go, it knows how many (new) physical pages are necessary
for backing fused pages. We found that, as a performance
optimization, WPF calls the MiAllocatePagesForMdl
routine with the number of physical pages it needs. Reverse
engineering this routine showed that it tries to allocate con-
tiguous physical pages from the end of memory, but allows
for holes if physical pages cannot be reclaimed.

This has an interesting implication for physical memory
massaging: we can get close to perfect memory reuse if
we can directly use memory that is backing fused pages
for mounting the attack. Furthermore, Flip Feng Shui re-
lies on huge pages for double-sided Rowhammer but we
do not always have access to huge pages on Windows
(e.g., in the browser). As fused pages are, due to how
MiAllocatePagesForMdlworks, mostly contiguous we
can use them as an alternative to perform a reliable double-
sided Rowhammer. Hence, we can follow these steps for
templating with WPF:

(1) Allocate a large number of memory pages. (2) Write
pair-wise duplicates into these pages. (3) Wait for WPF to
merge each pair. (4) Execute Rowhammer on the fused pages
for finding flips.

Note that we control the order of these pages in physical
memory based on the hash of their contents as discussed in
§2.2, necessary for performing double-sided Rowhammer.
Once we find some exploitable bit flips, we trigger copy-on-
write to release all the pages back to the system. In this stage,
we write security-sensitive data on a large number of pages,
such that every page is duplicated extacly once. After another
fusion pass, we complete the attack by triggering Rowhammer

No Dedup

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Uptime (s)

Zero-only KSM
copy-on-write KSM

copy-on-access KSM

Figure 4: Comparing the effect of copy-on-access with
copy-on-write on fusion rates.

again to corrupt the security-sensitive data, very much like
the original Flip Feng Shui.

Figure 3 shows a near-perfect physical memory reuse be-
tween the two page fusion passes with WPF. Note the physical
memory pages at the end of available memory to the guest
(2 GB or 524,288 physical pages). This shows that we can
perform Flip Feng Shui even when new pages are allocated
to back merged pages. One potential source of unreliability is
the fact that the order in which processes are selected for page
fusion is not known to the attacker as described earlier in §2.2.
Further, the content hash of the target pages influence the or-
der of physical memory allocation. We resolve both problems
by allocating a large number of pair-wise duplicated targets
(similar to [13]) to minimize the impact of other processes in
the system.

5.3 Summary
Table 1 summarizes the attacks that we described in this paper
with the underlying issues that permit information leakage
or physical memory massaging. Our new merge-based infor-
mation disclosure attacks show that just reading from fused
pages is enough to leak information, obviating even the need
to rely on copy-on-write events. Further, it is possible to ob-
serve changes in the virtual memory translation to detect
page fusion indirectly without accessing the target page at
all. Finally, our reuse-based attack shows that it is possible to
perform Flip Feng Shui even when new allocations are used
to back fused pages.

We implemented all these attacks on page fusion to verify
their practicality. We further performed a deeper analysis of
the attack surface of page fusion involving other side chan-
nels (e.g., the TLB and the DRAM row buffer) which we
omit due to space limitation. Our conclusion is that the de-
sign principles that we describe next protect against all these
attacks.

537

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

6 DESIGN PRINCIPLES
To stop all the potential attacks on page fusion, including the
ones we described in §4 and §5, we follow two main design
principles. The first principle stops information disclosure
and the second principle stops Flip Feng Shui.

6.1 Stopping Information Disclosure
To protect against information disclosure attacks, we should
stop the ability of an attacker to detect whether memory pages
are fused via either merge or unmerge events. We can achieve
this by ensuring that every page that an attacker tests always
behaves the same, whether it is merged or not. We call this
principle Same Behavior (SB) and discuss how we can en-
force it.

Merge-based attacks. It should be clear to the reader by
now that sharing memory between mutually distrusting par-
ties is not safe even if shared pages are write-protected. Hence,
to preserve security, no memory pages should be shared be-
tween distrusting parties. However, not sharing memory pages
across security boundaries means that we need to disable page
fusion. To resolve this dichotomy, we propose sharing pages
with the same contents that are not accessed by either party.
We do this by removing all access permissions to pages that
are shared. Any access to a shared page will cause a trap and
lead to an explicit copy of the page contents to a new page
in a copy-on-access fashion. We call this mechanism share
xor fetch or, in short, S⊕F. S⊕F ensures sharing only pages
that are not accessed or prefetched (countering implicit ac-
cesses via the prefetch x86 instruction [20]). This design
converges to two sets of pages: pages in the working set that
are not fused and idle pages that are candidates for fusion.

S⊕F potentially reduces fusion rates as pages which are
(continuously) read or executed can no longer be shared. To
investigate this, we modify KSM to unmerge on any page
fault and compare it with the baseline which only unmerges
on writes. Figure 4 shows the result of the experiment when
starting four VMs with five minutes between launch times,
each running an Apache server. After the page fusion process
stabilizes, we can see that copy-on-access only marginally
reduces fusion rates (1%). The reason for this is the fact
that most of the fusion benefits come from idle pages in the
system (e.g., the page cache) as we will later show in our eval-
uation. We also experimented with merging only zero pages
to mitigate information disclosure as proposed before [13].
Compared with when page fusion is off, zero-pages account
for only 16% of all duplicate pages, as shown in Figure 4.
This is insufficient in cloud settings and further justifies our
efforts in securing full (vs. zero-page only) page fusion. We
also note that zero-page fusion is not by itself secure against
Flip Feng Shui. We will further experiment with the effects of
S⊕F on fusion rates and performance later in our evaluation.

Take-away: S⊕F prevents attacks that disclose information
based on detecting a merge event because while the attacker
can check whether a page is a candidate for fusion, she can-
not infer whether it is actually fused. We now discuss how
we prevent information disclosure through unmerged-based
attacks.

Unmerge-based attacks. While S⊕F protects page fusion
against merge-based attacks, attackers can still use the differ-
ence in the behavior of merged and unmerged pages to detect
unmerge events by, for example, measuring if accessing a
page generates a lengthy page fault. To resolve this problem,
all memory pages should behave the same, whether they are
merged or not—enforcing SB.

A simple way to enforce this is by a mechanism which we
call Fake Merging (FM). FM ensures that pages that are not
merged behave the same as pages that are. For this purpose,
fake merging removes all access permissions and performs
copy-on-access for non-shared pages as well. Again, FM
sounds prohibitively expensive, but we will show that in real-
istic settings the performance penalty is negligible. The main
reason is that page fusion systems take a long time to scan
memory in order not to interfere with the main computation
and, as a result, the performance penalty is amortized over
long periods of time. Furthermore, we can apply working
set estimation to reduce the number of additional page faults
caused by FM without compromising security. Our working
set-based optimization, discussed in §7.2, exploits the intu-
ition that SB naturally converges to performing fusion on cold
(and highly fusable) pages in the system.

Take-away: FM prevents the popular copy-on-write side
channel since all first accesses to attacker-controlled pages
result in copy-on-access until the next fusion pass.

6.2 Flip Feng Shui attacks
To defend against Flip Feng Shui-like attacks, we need to
eliminate the attacker’s capability to control how the page
fusion system chooses the physical page that backs the merged
pages. We enforce this by making sure that the page fusion
system does not use physical memory in a predictable manner.
We achieve this by properly randomizing page allocations on
merge events. We call this principle Randomized Allocation
(RA).

To protect against merge-based attacks [37], we need to al-
ways allocate a new page on a merge event. Unfortunately, as
we showed in our new Flip Feng Shui attack against Windows,
simply allocating a new page to back a shared page is not
enough to prevent an attacker’s ability to massage the phys-
ical memory. The reason is that efficient physical memory
allocators often promote predictable reuse to reduce overhead.
Hence, RA should be enforced either by randomizing the

538

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

system-wide page allocator or at the page fusion system it-
self. Since randomizing the system-wide page allocator has
non-trivial performance and usability implications due to the
inherent fragmentation, we opt for enforcing RA at the page
fusion system directly.

Take-away: RA prevents Flip Feng Shui-like attacks since
attackers cannot predict the physical page that may back a
fused page.

6.3 Discussion
Enforcing SB has interesting implications for page fusion.
Pages in the working set will no longer fuse with other (idle)
pages. This design basically partitions the candidate memory
into two sets: the working set which is not considered for page
fusion and the idle set which may or may not get merged. It
becomes impossible for the attacker to tell whether pages
in the idle set are merged since we remove all access/fetch
permissions to these pages. Without access/fetch permissions,
these pages cannot be stored on shared resources in the system
such as the LLC or the DRAM row buffer, mitigating the new
attacks we discussed in §5.1.

Enforcing RA will stop Flip Feng Shui and its new reuse-
based variant which we discussed in §5.2) by randomizing
allocations that back fused pages. In Table 1, we also detail
which principle stops which classes of attack.

7 IMPLEMENTATION
We now discuss how VUsion adheres to SB and RA. We im-
plemented VUsion on top of the Linux kernel version 4.10.0-
rc6 and reused most of KSM’s original implementation and
kernel tracing functionality. Our patch changes only 846 lines
of code in the Linux kernel. This suggests that the proposed
modifications are realistic and that VUsion contributes a prac-
tical page fusion system for production use. We assume 4 KB
pages in this section and expand our implementation to huge
pages in the next section.

7.1 Enforcing the Design Principles
Share XOR Fetch. To implement S⊕F, we need to intercept

all accesses to a given page. Modifying the present bit in the
PTEs to trigger a page fault on access is one possibility, but
it requires intrusive changes to the Linux kernel as this bit
is used for tracking memory pages in many places in Linux.
Instead, we opted to use the reserved bits. According to the
Intel and AMD manuals [6, 24], if the reserved bits are set, the
processor generates a page fault on access regardless of the
permission bits in the corresponding PTE. In the page fault
handler, we check these bits and perform copy-on-access if
they are set. To prevent prefetch-based attacks, in turn,
we also set the Caching Disabled bit in the PTEs.

Fake Merging. To enforce SB, we also set the reserved bits
in PTEs of non-shared pages and perform copy-on-access
similarly to pages that are shared. We ensure that both shared
and non-shared pages follow the same code paths to avoid
opening other timing channels that an attacker could use
to detect merge events. More specifically, we make three
different design decisions compared to KSM.

(i) KSM uses the unstable tree to avoid write-protecting
the pages that are being considered for fusion. This opens up
a side channel since pages that become merged are immedi-
ately write-protected compared to pages that remain in the
unstable tree. Fortunately, to enforce SB, we need to remove
access permission from any page that is being considered for
fusion. Hence, VUsion simply does not require an unstable
tree and is hence protected from this side channel. (ii) With-
out additional care, pages that are merged take shorter during
copy-on-access than pages that are fake merged. This is due
to the fact that pages which are fake merged can be freed in
the page fault handler, as references to the page drop to zero.
This entails an expensive interaction with the buddy alloca-
tor. To counter this, we perform deferred free by queueing
these pages and freeing them in the background. Note that
deferred frees are already common practice in the kernel with
the advent of RCU lock. The real merge also queues a dummy
request to ensure the execution of the same instructions for
both merge and fake merge. (iii) An advanced attacker could
perform a page coloring attack on the page fault handler dur-
ing copy-on-access to infer the color of the source page. If this
is done across multiple scans, the attacker can infer a merge
with high probability if the color of the source page does
not change. We hence select new (random) physical pages to
back pages that are merged or faked merged during each scan.
Thanks to our working set-based optimization detailed below,
these extra costs are only incurred for cold pages with little
impact on performance.

Randomized Allocation. We reserve 128 MB of physical
memory in a cache to add 15 bits of entropy to physical mem-
ory allocations performed by VUsion during both merging
and unmerging. Under these conditions, an attacker seeking to
abuse page fusion in a Flip Feng Shui attack can only mount
a probabilistic (and thus unreliable) attack, where a specific
vulnerable template is controllably reused by the allocator
with a probability of only 2−15, providing much more entropy
than the fairly predictable standard page allocator [40].

7.2 Working Set Estimation
A naive version of VUsion would assume that all the pages in
the system are idle in each fusion round and the pages that are
actually in the working set will trigger a page fault regardless
of whether they were merged. This implementation, while

539

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

secure, results in a considerable number of page faults when
removing access to pages in the working set.

To address this problem, VUsion estimates the working
set of registered memory and does not consider it for fusion.
Doing so allows it to significantly reduce the number of page
faults, improving performance. To this end, we use the idle
page tracking facility in the Linux kernel [1]. During a scan,
we check if the page has not been accessed for a period that
can be controlled in VUsion. If that is the case, then VUsion
considers the page for fusion.

Note that working set estimation does not reveal any infor-
mation to the attacker except that the page is being considered
for fusion (but may or may not be actually fused) since it is
idle. In other words, any side channel attack can only leak al-
ready known information: which of the attacker’s own pages
are in the working set.

8 TRANSPARENT HUGE PAGES
Huge pages are becoming increasingly important for modern
systems as the working sets of applications increase in size.
With many workloads, virtualization also greatly benefits
from huge pages, owing to the higher cost of a TLB miss in
the guest VM [8, 12, 18, 29, 42]. khugepaged is a Linux
kernel daemon that runs in the background and transparently
collapses consecutive physical pages into huge pages (THPs).
Conversely, KSM breaks up THPs again whenever there is a
sharing opportunity in them. Unfortunately, as discussed in
§5, this opens up new side channels to detect merge events.
Here, we discuss a secure implementation of THPs for our
design, making VUsion deployable in practice. Our design for
THPs follows that of Ingens [29] while addressing security
issues such as translation attacks.

8.1 Handling Idle and Active Pages
Since the difference between huge and normal pages can be
used to detect a merge event, we have to ensure that pages that
are being considered for fusion are either all huge or normal
to enforce SB. Since VUsion considers only idle pages for
fusion, the size of the pages does not affect performance.
Hence, we should opt for maximizing fusion rate. Since even
a single byte difference makes it impossible to merge pages,
sharing opportunities will be greater for normal pages. As
a result, every time we consider a THP for fusion, we first
break it up into normal pages. As mentioned earlier, the only
information this provides to the attacker is that this THP is
idle and a candidate for fusion. Since all pages considered
for fusion are now small, we stop the attacks based on the
difference in translation of huge and normal pages.

The pages in the working set are not candidates for fusion,
but they are important for performance. It is possible that a
huge page becomes partially idle and partially active. This

creates a performance versus capacity trade-off. On x86-64,
for example, there are 512 pages in a huge page. At any
point in time, any number K of these pages could be active.
If we consider the huge page active if K ≥ n (at least n
active 4 KB pages), then n = 1 provides the best possible
performance (conserving huge pages) while bigger values of
n will provide more fusion opportunity, increasing available
capacity. VUsion provides support for both high performance
(a la Ingens [29]) or maximum fusion rate (a la KSM) while
preserving security. Recent work shows how one can optimize
n dynamically depending on the workload [21].

8.2 Securing khugepaged
As mentioned, we need to collapse normal pages that become
active into huge pages to improve performance. Fortunately
the background khugepaged thread performs this for free.
However, we must be careful to prevent it from collapsing
(fake) merged pages back into huge pages. Otherwise, an
attacker can perform the translation attack using pages that
are next to the target page.

To this end, we again use the idle page tracking mechanism
available in the Linux kernel. If one (or more) of 512 pages
that can potentially form a huge page is active, we will (fake)
unmerge the other 511 pages if any of them is (fake) merged.
As part of transforming 512 contiguous virtual pages into
a huge virtual page, khugepaged will copy the contents of
these pages into 512 contiguous physical pages. This is safe
because all of these pages are first (fake) unmerged. This
way, khugepaged preserves the SB semantics by securely
collapsing pages in the working set into huge pages.

To summarize, VUsion enforces SB on huge pages by
breaking them before (fake) merging them, and khugepaged
only collapses pages if their surrounding pages are first (fake)
unmerged before forming a huge page with them.

9 EVALUATION
We evaluate three aspects of VUsion compared to original
Linux/KSM: (1) Does VUsion stop all the attacks reviewed in
§4 and §5? (2) How does the performance compare? (3) How
do the fusion rates compare?

Benchmarks. We run synthetic microbenchmarks to eval-
uate the security of VUsion. To evaluate performance and
memory saving, we use various benchmarks that stress dif-
ferent parts of the system. To fully stress the memory sub-
system, we use Stream [3], a synthetic memory bandwith
benchmark. We further use SPEC CPU2006 and PARSEC as
general-purpose memory-intensive benchmarks, Postmark as
a file system benchmark, and Apache (httpd), memcached and
Redis as server benchmarks. Unless otherwise specified, the
benchmarks run with four VMs configured with a virtual core
and 2 GB of RAM. One of the VMs runs the benchmark while

540

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

100
 0

 100
 200
 300
 400
 500
 600
 700

 0 10000 20000 30000 40000 50000 60000 70000 80000

Fr
e
q
u
e
n
cy

Cycles

Unshared pages
Shared pages

Figure 5: Freq. dist. of timing 1,000 writes in KSM.

80
60
40
20
 0

 20
 40
 60
 80

 0 10000 20000 30000 40000 50000 60000 70000 80000

Fr
e
q
u
e
n
cy

Cycles

Unshared pages
Shared pages

Figure 6: Freq. dist. of timing 1,000 reads in VUsion.

others provide load for page fusion. We also test a diverse set
of VMs to observe the effects on fusion rates.

Testbed. We use a 4-core Intel Xeon E3-1240 v5 processor
running at 3.5 GHz with 24 GB of DDR4 memory as our eval-
uation testbed. We further experimented with a dual processor
Xeon E5-2650 v2 system with 32 GB of memory and obtained
similar results which we do not include for brevity. we con-
figure both VUsion and KSM with KSM default values (i.e.,
T = 20 ms and N = 100 pages). We run server benchmarks
using a client machine over a 1 Gbps network. We configure
the VMs’ virtual NICs using virtio with vhost enhancements
for high-performance I/O.

9.1 Security
We show that VUsion enforces SB and RA by timing reads
and writes to pages that are shared or unshared, and checking
whether the page allocations are truly random.

Enforcing SB. Figure 5 shows the frequency distribution
of timing 1,000 writes in KSM after a fusion pass. The two
distinct peaks for shared and unshared pages show the copy-
on-write side channel present in KSM. Figure 6 shows the
results of 1,000 reads in VUsion. In the case of VUsion,
there is no visible difference between shared and unshared
pages since both cases trigger copy-on-access events. The
results for writes are similar to reads. To gain more confidence,
we perform a Kolmogorov-Smirnov test to see whether the
timing events for merged and unmerged pages follow the
same distribution in VUsion. The calculated p-value is high
(0.36) which means that we do not reject the hypothesis that
these events are from the same distribution.

These tests show that VUsion conforms to the SB prin-
ciple that we described in §6. We note that our analysis

copy MB/s scale MB/s add MB/s triad MB/s
No Dedup 11109 10690 12463 12342
KSM 11035 10644 12431 12291
VUsion 11019 10695 12423 12280
VUsion THP 11022 10646 12441 12271

Table 2: Performance of the Stream benchmark.

can guarantee correctness, but not the complete absence of
other (arbitrary) side channels. While recent work shows
promising results for formal constant-time verification [7],
doing so is difficult in the context of the Linux kernel but
an interesting direction for future work. Further, our exper-
iments with the prefetch instruction confirm that setting
the “Caching Disabled” bit in the PTEs of (fake) merged
pages stops the recently reported side channel [20] where
pages can be prefetched into the cache without access permis-
sions.

Enforcing RA. We record the offsets of pages chosen for
merge and fake merge in VUsion when executing two VMs.
We then perform a Kolmogorov-Smirnov goodness of fit test
against the uniform distribution. The calculated p-value is
high (0.44) which means that the test does not reject our
hypothesis that physical page allocations in VUsion follow
the uniform distribution.

9.2 Performance
To gain a complete understanding of possible performance
issues when enforcing S⊕F, we first quantify the nature of
common merge events. Table 3 shows the type of merged
pages in one of the four VMs. Interestingly, most possibilities
for fusion come from idle pages in the system (i.e., buddy) al-
locator and the page cache. To experiment with the former, we
evaluate VUsion with the Stream microbenchmark as well
as the memory-intensive SPEC and PARSEC benchmarks. To
experiment with the latter, we evaluate VUsion with the file
system-intensive Postmark benchmark. We also complement
our analysis with a server application benchmark, important
to evaluate the impact on common cloud workloads. Our
results are as follows.

Stream. Table 2 shows the available memory bandwidth
when running Stream in a VM with/without KSM and in
VUsion with/without THP enhancements. In all cases, the
additional overhead introduced by KSM or VUsion is below
1%. This is due to the fact that the default scanning rate is
slow (5000 pages/second) and the few additional page faults
only marginally affect the memory bandwidth.

SPEC CPU2006. Figure 7 shows the performance over-
head of KSM and VUsion with/without THP enhancements
compared to when page fusion is turned off over the general-
purpose SPEC CPU2006 benchmark suite. Considering the

541

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

-5

 0

 5

 10

 15

 20

 25

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar

xalancbm
k

bw
aves

gm
ilc

zeusm
p

grom
acs

cactusADM

leslie3d

nam
d

dealII

soplex

povray

calculix

Gem
sFDTD

tonto

lbm
w
rf

sphinx3

geom
ean

%
 o

v
e
rh

e
a
d

KSM
VUsion

VUsion THP

Figure 7: Performance overhead on SPEC CPU2006.

-20

-10

 0

 10

 20

 30

raytrace

canneal

lu_ncb

stream
cluster

x264
ferret

water_spatial

dedup

freqm
ine

bodytrack

volrend

vips
ocean_cp

facesim

raytrace

lu_cb
swaptions

blackscholes

radiosity

water_nsquared

radix
fluidanim

ate

geom
ean

%
 o

v
e
rh

e
a
d

KSM
VUsion

VUsion THP

Figure 8: Performance overhead on PARSEC.

geometric mean, KSM adds 2.2% overhead to the baseline.
VUsion adds another 2.7% (overall 4.9%) and enabling huge
pages adds 2.4% (overall 4.6%). Most of the benchmarks
are insensitive to the additional page faults caused by enforc-
ing S⊕F. Similar to Stream, the additional page faults are
bounded by the number of pages that become active over
a page fusion period (i.e., a few hundred seconds). Hence,
we conclude that VUsion enforces SB and RA with minimal
performance overhead in a general-purpose workload.

PARSEC. To study the behavior of the system under con-
current workloads, we experiment with PARSEC. We increase
the number of virtual cores to four to increase possible par-
allelism in our test VM. Figure 8 shows the outcome. fmm
and barnes require more than 8 GB of RAM to execute
and the netapps category hangs in our unmodified setting
and hence we excluded. KSM adds 1.7% of performance
overhead on top of the baseline. Consideraig the geometric
mean, VUsion slightly degrades KSM performance by 0.5%
(overall 2.2%) while VUsion’s THP enhancements improve
KSM’s performance by 1.4% (overall 0.8%). These results
further prove that VUsion introduces low overhead and can
even improve KSM’s performance.

Postmark. Table 4 shows the number of transactions per
second in Postmark, a benchmark emulating a mailserver
that heavily interacts with the file system. KSM degrades
performance by 1.5% while VUsion degrades performance
by 2.9%. VUsion with THP enhancements slightly improves
the performance relative to KSM (0.2% improvement over

page cache (%) buddy (%) kernel (%) rest (%)

KSM 51.8 38.4 6.9 2.9
VUsion 51.2 38.6 6.6 3.6
VUsion THP 50.4 32.8 6.3 10.5

Table 3: Contribution of different page types to page fu-
sion.

mean (tx/s) min (tx/s) max (tx/s)

No dedup 3237.3 3191 3289
KSM 3221.7 3215 3232
VUsion 3178.7 3154 3191
VUsion THP 3246.3 3222 3285

Table 4: Performance of the Postmark benchmark.

kreq/s (rel.) lat. 75% lat. 90% lat. 99%

No Dedup 22.03 (100%) 1.34 ms 1.95 ms 4.49 ms
KSM 18.42 (83.6%) 1.59 ms 2.34 ms 5.87 ms
VUsion 18.28 (82.3%) 1.64 ms 2.47 ms 6.51 ms
VUsion THP 21.18 (96.1%) 1.37 ms 2.03 ms 5.55 ms

Table 5: Performance of the Apache server.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f

T
H

P
s

Time (s)

No Dedup
KSM

VUsion
VUsion THP

Figure 9: Conserving THPs with the Apache benchmark.

baseline). These results suggest that VUsion can secure page
fusion without performance penalty in workloads that benefit
from it the most.

Apache. We use Apache 2.4.18 with the default prefork
module and wrk [5] to generate load on the server at re-
mote CPU saturation using 20 concurrent connections and
10 threads for a duration of 500 seconds. Table 5 shows the
throughput and various latency percentiles that we achieve un-
der different configurations. In the case of throughput, for
Apache, KSM incurs 20.0% of overhead on the baseline
while VUsion adds a marginal 0.4% overhead. THP enhance-
ments in VUsion improve the performance relative to KSM
by 12.7%. Latency follows a similar trend: VUsion provides
similar performance to KSM while the THP enhancements in
VUsion improve the latency relative to KSM.

Figure 9 shows the number of huge pages during runtime
of the Apache benchmark. As expected, the number of huge
pages is higher in VUsion with THP compared to KSM. More
importantly, these huge pages are part of the working set,

542

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

Redis (kreq/s) Memcached (kreq/s)

No dedup 175.30 (100%) 167.5 (100%)
KSM 155.66 (88.8%) 163.97 (97.9%)
VUsion 155.09 (88.4%) 155.11 (92.6%)
VUsion THP 163.8 (93.4%) 163.87 (97.8%)

Table 6: Throughput of Redis and Memcached.

Redis SET (ms) Memcached SET (ms)
Percentile 90.0 99.0 99.9 90.0 99.0 99.9

No Dedup 1.6 2.4 4.9 1.7 2.5 3.5
KSM 1.7 2.8 6.7 1.8 3.2 6.3
VUsion 1.8 3.0 7.3 2.0 3.6 6.3
VUsion THP 1.6 2.8 7.0 1.8 2.9 4.7

Redis GET (ms) Memcached GET (ms)
Percentile 90.0 99.0 99.9 90.0 99.0 99.9

No Dedup 1.6 2.4 5.0 1.7 2.5 3.5
KSM 1.7 2.8 7.7 1.8 3.2 6.2
VUsion 1.8 3.0 7.0 2.0 3.6 6.2
VUsion THP 1.6 2.7 6.7 1.8 2.9 4.7

Table 7: Latency of Redis and Memcached.

improving performance as reported in Table 5. During the
runtime of the benchmark, the VM allocates more memory
with demand paging. Initially the allocations are backed by
huge pages, but VUsion without THP enhancements breaks
them down when considering them for fusion.

Key-value stores. To experiment with server applications
that have a large memory footprint, we experiment with Redis
(version 3.0.6) and Memcached (version 1.4.25), two popular
key-value stores. We use memtier benchmark [4] with the
default configuration for generating load: using 4 threads, 50
clients, a set/get ratio of 1:10, and 32-byte objects from a 10
million key space.

Table 6 shows the throughput of Redis and Memcached.
Redis follows a similar trend as Apache discussed earlier:
KSM and VUsion provide similar throughput and the THP
enhancements in VUsion improve overall performance. The
throughput of Memcached with VUsion is more severely
impacted (5.3% worse than KSM), but the THP enhancements
bring the throughput of VUsion close to KSM. Table 7 shows
the latency of GET and SET requests in both key-value stores.
We observe similar trends again: the latency with VUsion
is marginally impacted compared with KSM and the THP
enhancements in VUsion improve the results, even at the
tail but with the exception of SET requests (4.5% overhead
compared to KSM).

9.3 Fusion Rates
To study fusion rates with VUsion, we showcase three sce-
narios. The first scenario shows fusion rates of idle VMs
and how quickly VUsion fuses memory compared to KSM.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 200 400 600 800 1000 1200 1400

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Time (s)

No Dedup
KSM

VUsion
VUsion THP

Figure 10: Memory consumption of idle VMs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Time (s)

No dedup
KSM

VUsion
VUsion THP

Figure 11: Memory consumption of different VMs.

The second scenario shows the scalability of VUsion, namely
when starting many different VMs of different types. The
third scenario shows the memory consumption during our
Apache server benchmark.

Idle VMs. Figure 10 shows the total memory consumption
of four VMs started 5 minutes after each other under different
systems. This shows that, in an idle setting (expected on many
cloud hosts), VUsion’s fusions rates converges to that of
KSM despite the conservative S⊕F policy. VUsion, however,
takes longer to merge pages when compared to KSM. As
we discussed in §7.1, KSM merges pages as soon as it finds
a match in its stable tree. VUsion, however, waits one scan
round before (fake) merging to enforce SB. Further, waiting
one round allows VUsion to reduce page faults by focusing
on pages that are not in the working set.

Diverse VMs. To understand the effects of VUsion on fu-
sion rate in a more realistic setting, we experiment with 44
VM images from our DAS4 cloud deployment registered by
various teams. These images include various Linux distribu-
tions and software stacks. We start 16 VMs at the same time
using randomly selected VM images and report the consumed
memory over time in Figure 11. The results are similar to
our synthetic test; VUsion achieves a similar fusion rate com-
pared to KSM. VUsion with THP enhancements conserves
huge pages that are in the working set while reducing fusion
rate by 61%. These results show that VUsion provides its
users with security with a trade-off between page fusion and
performance.

543

SOSP ’17, October 28, 2017, Shanghai, China Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Time (s)

No dedup
KSM

VUsion
VUsion THP

Figure 12: Memory consumption of the Apache bench-
mark.

Apache. Figure 12 shows the memory consumption dur-
ing the Apache benchmark which we reported on earlier. We
start four VMs together and start the benchmark on one of
them after 360 seconds. Again VUsion achieves a similar fu-
sion rate compared to KSM while similarly degrading fusion
rate when conserving huge pages to improve performance.
We also notice memory consumption increasing during the
benchmark period for all cases. This is due to Apache’s self-
balancing strategy, which gradually expands the number of
worker processes to serve many parallel requests to improve
its throughput.

10 RELATED WORK
10.1 Attacks
Page fusion has been previously used in various attacks: as
a prelude to a FLUSH+RELOAD attack [44], as a side chan-
nel to fingerprint software or build covert channels [25, 34,
39, 43], and as a way to brute-force ASLR [11, 13] or pass-
words [13]. Finally, the Flip Feng Shui attack [37] uses page
fusion for physical memory massaging to compromise cryp-
tographic keys of a victim VM.

In all cases, the traditional mitigation is to disable page
fusion, wasting memory. An alternative is to disable active
page fusion and only fuse swapped pages within a compressed
in-memory cache. This is the approach taken by the current
Windows Memory Combining implementation (previously the
name of the active page fusion system on Windows, now
disabled). This design, however, misses substantial fusion
opportunities compared to active page fusion. In contrast,
VUsion preserves page fusion benefits, mitigates all existing
attacks, and even protects against a number of new attack
vectors that we presented in this paper.

10.2 Defenses
The only existing defense against information leakage via
page fusion is HexPADS [36]. HexPADS is an anomaly de-
tection system that uses performance counters to detect suspi-
cious behavior. Given the anomaly detection nature of Hex-
PADS, it is prone to false positives and false negatives, pro-
viding attackers with the opportunity to tune their attacks and

easily bypass HexPADS. Furthermore, HexPADS does not
protect against physical memory massaging. In comparison,
VUsion secures page fusion by design, improving perfor-
mance as a by-product, and does not have any of the afore-
mentioned weaknesses.

The S⊕F design principle relies on the copy-on-access
technique, which has also been previously used in different
applications such as post-copy live migration [22] and de-
fending against cache attacks [45]. In contrast, VUsion uses
copy-on-access as a building block for securing page fusion
and combines it with protection against prefetch-based
and other attacks.

Timing attacks against page fusion and side-channel at-
tacks in general can be (partially) mitigated by reducing the
timer accuracy. At the software level, major browsers such
as Chrome, Firefox, and Microsoft Edge have reduced the
accuracy of their timers to prevent side-channel attacks from
JavaScript. Kohlbrenner and Shacham [28] propose introduc-
ing noise in the timer and the event loop of JavaScript to
hinder timing measurement of system events. At the hardware
level, TimeWarp [31] reduces the fidelity of timers and perfor-
mance counters to make it difficult for attackers to distinguish
between different microarchitectural events. Unfortunately,
degrading the timer has performance implications and as
shown by Gras et al. [19] can easily be bypassed.

11 CONCLUSION
Page fusion reduces memory pressure in modern cloud
and consumer platforms, but existing approaches have been
plagued by security weaknesses that lead to information dis-
closure and control over physical memory. This paper shows
that these weaknesses are not fundamental and proposes a se-
cure page fusion system with marginal degradation of fusion
rates. The new design stops known and new attacks against
page fusion, while also addressing inefficiencies. Our solution
provides evidence that it is possible to support both secure
and efficient page fusion in real-world settings.

ACKNOWLEDGEMENTS
We would like to thank our shepherd Jay Lorch and the anony-
mous SOSP reviewers for their extensive and helpful feed-
back. The IT for research group at the Vrije Universiteit
Amsterdam provided us with one of the servers used in VU-
sion’s evaluation. This work was supported by the European
Commission through project H2020 ICT-32-2014 SHARCS
under Grant Agreement No. 644571 and by the Netherlands
Organisation for Scientific Research through grant NWO
639.023.309 VICI Dowsing.

544

Secure Page Fusion with VUsion SOSP ’17, October 28, 2017, Shanghai, China

REFERENCES
[1] 2015. Idle Page Tracking. (2015). Retrieved 25.8.2017 from https:

//www.kernel.org/doc/Documentation/vm/idle page tracking.txt
[2] 2016. (March 2016). Retrieved 25.8.2017 from http://www.cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2016-3272
[3] 2016. STREAM: Sustainable Memory Bandwidth in High Performance

Computers. (2016). Retrieved 25.8.2017 from https://www.cs.virginia.
edu/stream/

[4] 2017. memtier benchmark: A High-Throughput Benchmarking Tool
for Redis and Memcached. (2017). Retrieved 25.8.2017 from https:
//github.com/RedisLabs/memtier benchmark

[5] 2017. WRK - a HTTP Benchmarking Tool. (2017). Retrieved 25.8.2017
from https://github.com/wg/wrk

[6] Advanced Micro Device. 2013. AMD64 Architecture Programmer’s
Manual Volume 2: System Programming.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. 2016. Verifying Constant-Time Imple-
mentations (SEC’16).

[8] Andrea Arcangeli. 2010. Transparent Hugepage Support. KVM Forum
(2010).

[9] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing
Memory Density by Using KSM (OLS’09).

[10] Sean Barker, Timothy Wood, Prashant Shenoy, and Ramesh Sitaraman.
2012. An Empirical Study of Memory Sharing in Virtual Machines
(USENIX ATC’12).

[11] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross.
2015. CAIN: Silently Breaking ASLR in the Cloud (WOOT’15).

[12] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. 2008. Accelerating Two-dimensional Page Walks for Virtual-
ized Systems (ASPLOS XIII).

[13] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2016. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector (SP’16).

[14] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sas-
saman, , and Anna Shubina. 2011. Exploit Programming: From Buffer
Overflows to “Weird Machines” and Theory of Computation (;login:).

[15] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch. 2017. Vulnerabilities in MLC NAND Flash Memory Pro-
gramming: Experimental Analysis, Exploits, and Mitigation Techniques
(HPCA’17).

[16] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. 2011. An Empirical
Study on Memory Sharing of Virtual Machines for Server Consolidation
(ISPA’11).

[17] Google. 2017. Android Low RAM Configuration. (2017). Retrieved
25.8.2017 from https://goo.gl/Rz4B6I

[18] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex
Landau, Assaf Schuster, and Dan Tsafrir. 2012. ELI: Bare-metal Per-
formance for I/O Virtualization (ASPLOS XVII).

[19] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. 2017. ASLR on the Line: Practical Cache Attacks on the
MMU (NDSS’17).

[20] Daniel Gruss, Cementine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. 2016. Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR (CCS’16).

[21] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, and John C. S. Lui.
2017. SmartMD: A High Performance Deduplication Engine with
Mixed Pages (ATC’17).

[22] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-
copy Live Migration of Virtual Machines (OSR’09).

[23] Intel. 2017. Intel Clear Containers: Building a Virtualization Continuum.
(2017). White paper.

[24] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software
Developer’s Manual.

[25] Gorka Irazoqui, Mehmet Sinan IncI, Thomas Eisenbarth, and Berk
Sunar. 2015. Know Thy Neighbor: Crypto Library Detection in Cloud
(PETS’15).

[26] Samira Khan, Donghyuk Lee, and Onur Mutlu. 2016. PARBOR: An
Efficient System-Level Technique to Detect Data-Dependent Failures
in DRAM (DSN’16).

[27] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.
Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors (ISCA’14).

[28] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for
Uncertain Times (SEC’16).

[29] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens (OSDI’16).

[30] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
2015. Last-Level Cache Side-Channel Attacks are Practical (SP’15).

[31] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Time-
Warp: Rethinking Timekeeping and Performance Monitoring Mecha-
nisms to Mitigate Side-channel Attacks (ISCA’12).

[32] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. 2015. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications (CCS’15).

[33] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: The Case of AES (CT-RSA’06).

[34] R. Owens and Weichao Wang. 2011. Non-Interactive OS Fingerprint-
ing Through Memory De-Duplication Technique in Virtual Machines
(IPCCC’11).

[35] PaX Team. 2003. Address Space Layout Randomization. Phrack,
March 2003.

[36] Mathias Payer. 2016. HexPADS: A Platform to Detect “Stealth” Attacks
(ESSoS’16).

[37] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in
the Software Stack (SEC’16).

[38] Mark Seaborn. 2015. Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges (BHUSA’15).

[39] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. 2011.
Memory Deduplication As a Threat to the Guest OS (EUROSEC’11).

[40] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms (CCS’16).

[41] VMWare. 2015. Disallowing inter-Virtual Machine Transparent Page
Sharing. (2015). Retrieved 25.8.2017 from https://goo.gl/uH0zNP

[42] Mark Wagner. 2011. KVM Performance Improvements and Optimiza-
tions. KVM Forum (2011).

[43] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. 2012. A Covert
Channel Construction in a Virtualized Environment (CCS’12).

[44] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-channel Attack (SEC’14).

[45] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. 2016. A Software
Approach to Defeating Side Channels in Last-Level Caches (CCS’16).

545

https://www.kernel.org/doc/Documentation/vm/idle_page_tracking.txt
https://www.kernel.org/doc/Documentation/vm/idle_page_tracking.txt
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3272
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3272
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://github.com/wg/wrk
https://goo.gl/Rz4B6I
https://goo.gl/uH0zNP

	Abstract
	1 Introduction
	2 Page Fusion
	2.1 Linux Kernel Same-page Merging
	2.2 Windows Page Fusion

	3 Threat Model
	4 Known Attack Vectors
	4.1 Information Disclosure
	4.2 Flip Feng Shui

	5 New Attack Vectors
	5.1 Information Disclosure
	5.2 Flip Feng Shui
	5.3 Summary

	6 Design Principles
	6.1 Stopping Information Disclosure
	6.2 Flip Feng Shui attacks
	6.3 Discussion

	7 Implementation
	7.1 Enforcing the Design Principles
	7.2 Working Set Estimation

	8 Transparent Huge Pages
	8.1 Handling Idle and Active Pages
	8.2 Securing khugepaged

	9 Evaluation
	9.1 Security
	9.2 Performance
	9.3 Fusion Rates

	10 Related Work
	10.1 Attacks
	10.2 Defenses

	11 Conclusion
	References

