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Abstract— A promising alternative for treating absence
seizures has emerged through closed-loop neurostimulation,
which utilizes a wearable or implantable device to detect and
subsequently suppress epileptic seizures. Such devices should
detect seizures fast and with high accuracy, while respecting
the strict energy budget on which they operate. Previous work
has overlooked one or more of these requirements, resulting
in solutions which are not suitable for continuous closed-loop
stimulation. In this paper, we perform an in-depth design
space exploration of a novel seizure-detection algorithm, which
uses a complex Morlet wavelet filter and a static thresholding
mechanism to detect absence seizures. We consider both the
accuracy and speed of our detection algorithm, as well as
various trade-offs with device autonomy when executed on
a low-power processor. For example, we demonstrate that a
minimal decrease in average detection rate of only 1.83% (from
92.72% to 90.89%) allows for a substantial increase in device
autonomy (of 3.7x) while also facilitating faster detection (from
710 ms to 540 ms).

I. INTRODUCTION

Absence epilepsy is a neurological disease characterized
by episodes of transient impairment of consciousness (called
seizures or ictal events). In spite of a number of available
treatments (i.e. medication and surgery), absence epilepsy is
yet to be treated effectively. However, several studies have
shown the potential of closed-loop neurostimulation for the
treatment of epileptic seizures [2], [4], [5], [8], [12]. These
systems monitor brain activity using Electroencephalography
(EEG) or Electrocorticography (ECoG) and suppress seizure
manifestation by applying electrical or optical neurostimula-
tion upon detection.

In practice, a closed-loop stimulator would be realized as
a wearable (or implantable) device for providing continu-
ous and mobile treatment. To maximize treatment efficacy,
such devices should detect seizures both accurately and
fast, allowing seizures to be suppressed prior to significant
manifestation. Furthermore, these devices typically operate
autonomously (i.e., they are battery powered), putting severe
restrictions on its energy consumption. However, existing
studies have not considered all these requirements and
have instead focused (primarily) on either fast, accurate or
lightweight detection algorithms [3], [7], [9], resulting in
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algorithms that are not suitable for continuous closed-loop
stimulation.

In this work, we evaluate the suitability of a novel seizure-
detection algorithm for the treatment of absence epilepsy,
based on a complex Morlet wavelet and a static thresholding
mechanism. A preliminary evaluation of the algorithm has
shown promising results in terms of both its detection accu-
racy and detection delay [12]. Moreover, the (computational)
simplicity of the algorithm makes it a potential candidate for
wearable or implantable devices. We consider the effects of
various algorithmic parameters on its detection performance
and energy consumption, including the number and offset of
filter coefficients and different threshold levels. To the best
of our knowledge, this is the first work which considers all
design goals relevant to continuous closed-loop stimulation
and describes various trade-offs between them.

The remainder of this paper is structured as follows:
First, we discuss studies related to seizure detection in
Section II. The complex Morlet wavelet and its application in
the seizure-detection system is described in Section III and
subsequently evaluated in Section IV. Finally, concluding
remarks are provided in Section V.

II. RELATED WORK

Absence and generalized seizures exhibit increased os-
cillatory neural activity in the brain [5], which has made
frequency-based filtering (e.g., using wavelets) a prime can-
didate for detection. In this Section, we first describe studies
which focus on detecting epileptic events accurately and/or
fast, after which we discuss low-power implementations.

One of the first studies using wavelets presents a seizure-
detection algorithm using a level-3 DAUB4 wavelet along
with a median filter [7]. The proposed solution achieves an
average detection delay of 3.3 s, with a perfect true-positive
rate (i.e., rate of correctly detecting seizures) of 100% and a
low False-Positive-per-seizure rate of 0.04. A combination
of wavelet-based input filtering and an Artificial Neural
Network was proposed in [1]. After considering various
wavelets, a maximum average detection rate (ADR) of 95.8%
is obtained using a Biorthogonal (bior1.3, bior1.5) wavelet.
In [3], a combination of a level-3 DAUB4 wavelet and
resevoir computing is proposed as a classification method,
demonstrating that seizures may be detected both fast (in
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0.97 sec) and accurately (ADR of 97.2%). While these
solutions are capable of detecting seizures accurately and at
minimal delay, they employ computationally expensive algo-
rithms, making them unsuitable for wearable or implantable
devices.

Given the limited energy budget, several low power ASIC
implementations have been proposed to form minimalistic
detection methods. For example, it is proposed in [6] to use
a Daubencies-4 wavelet and thresholding for classification,
resulting in an ADR of 97% and an average power con-
sumption of 440 µW. Another study proposes to exploit
the increase in oscillatory neural activity using a simple
thresholding mechanism in the frequency domain [10]. This
results in minimal power consumption (50 µW) and a perfect
true-positive rate of 100%, yet results in a high detection
delay of 13.5 s. An ultra-lightweight solution is proposed
in [9], where thresholding is applied on the amplitude on
the raw EEG signal (time domain). The simplicity of this
solution has a substantial (negative) impact on the ADR
(92.1%), yet sports an ultra-low power consumption of under
350 nW and a detection delay of 8.5 s. We note that these
low-power implementations exhibit a high detection delay,
making them ineffective for closed-loop stimulation.

III. SYSTEM DESCRIPTION

In this Section, we describe the complex Morlet wavelet
filter and how it is applied for seizure detection. Previous
work has shown that this wavelet is well-suited for the
detection of Spike-Wave Discharges (SWDs, a hallmark
feature of absence seizures [5]), given their morphology.
A practical FIR implementation of this filter defines the
filter output as the total power of its real and imaginary
components [12]; that is:

PFIR = (

N�1∑
i=0

Re[ci]x[n− i])2+(

N�1∑
i=0

Im[ci]x[n− i])2 (1)

where PFIR is the filter output, x are the input samples, N
is the order of the filter and ci are the filter coefficients.
As a baseline, we designed an FIR filter which closely
approximates the ideal Morlet wavelet with N = 229
coefficients using the effective support range for the wavelet
as provided by the MATLAB Wavelet Toolbox, the impulse
response of which is depicted in Figure 1.

Let us now consider the use of the Morlet wavelet in
seizure detection, exemplified in Figure 2 and showing ECoG
input (top) and the corresponding filter output (bottom).
As depicted, the average filter response during ictal events
is expectedly higher compared to inter-ictal periods: This
allows us to identify ictal events in the input signal using a
simple thresholding mechanism, where a seizure is detected
when an upper threshold (Vth,h) is crossed. Upon detection, a
closed-loop system would start stimulating brain tissue until
the seizure is suppressed, detected using a lower threshold
Vth,l that is set to the average filter output during inter-
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Fig. 1: Impulse response for the baseline complex Morlet-
wavelet filter, consisting of 229 coefficients.
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Fig. 2: SWD-detection using the Morlet wavelet filter. Top:
ECoG recordings where a seizure occurs between the ”Start”
and ”Stop” annotations. Bottom: Filter output PFIR, where
a seizure is detected after some delay.

ictal periods1. Finally, Figure 2 reveals that a delay occurs
between the onset of a seizure and detection. Both this delay
and the seizure-detecting capabilities are a direct function
of the filter implementation and Vth,h, as discussed in the
following section.

IV. EVALUATION

To explore the various trade-offs between seizure-detection
accuracy, delay and device autonomy, we next evaluate vari-
ous instances of our detection algorithm. First, we introduce
our experimental setup in Section IV-A, after which the
algorithm is evaluated in Section IV-B.

A. Experimental Setup

We start by presenting our figures of merit, after which we
continue by describing the detection-algorithm parameters
and conclude with the datasets used in our evaluation.

1Note that Vth,l is used to identify seizure suppression and has no direct
influence on the algorithm’s detection capabilities.
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1) Evaluation metrics: The algorithm is evaluated in
terms of detection accuracy, detection delay and device
autonomy (energy consumption). The average detection rate
(ADR) quantifies how accurately inter-ictal periods (i.e.,
periods without seizures) are distinguished from ictal events
(seizures) and is defined as ADR = TPR + TNR

2 , where
TPR is the true positive rate (also known as sensitivity) and
TNR is the true negative rate (also known as specificity).
TPR signifies the percentage of correctly classified seizures
and is defined as TPR = TP

(FN+TP ) , where TP = true
positive (correct detection of a seizure) and FN = false
negative (absence of detection during a seizure). A high
TPR indicates that the filter detects most seizures correctly,
which would allow a closed-loop stimulator to identify
and suppress most seizures. Analogously, TNR specifies
how well inter-ictal periods are correctly classified, that is,
TNR = TN

(FP+TN) , where TN = true negative (correct
detection of an inter-ictal period) and FP = false positive
(incorrect seizure indication). A high TNR means that few
inter-ictal events are falsely classified as seizures, minimizing
the adverse effects experienced by a patient resulting from
undesired stimulation.

The detection delay Td is the time between the onset of
an ictal event and the time at which it is detected by the
filter. A low detection Td is beneficial as it allows for seizure
suppression prior to significant manifestation.

To evaluate device autonomy, the detection algorithm is
executed on the low-power SiMS processor [11]. To get
an accurate estimation of autonomy, we first synthesize
the SiMS processor for a UMC 90nm CMOS technology
in Synopsys Design Compiler using Faraday SP libraries
(due to availability). We subsequently obtain the switching
activity of the algorithm executed on the SiMS processor
using RTL simulation in ModelSim. An estimation of the
energy consumption is subsequently obtained by evaluating
the switching activity for the synthesized core in Synopsys
PrimeTime. Finally, autonomy is derived by normalizing this
energy consumption to a reference battery capacity of 0.1
mWh. A high autonomy allows the device to stay on for a
prolonged period of time, benefiting its operational lifetime.

2) Detection parameters: The baseline filter accurately
approximates a continuous complex Morlet wavelet using
N = 229 coefficients. To trade-off detection performance
and autonomy, we evaluate various instances of this filter us-
ing a subset of these coefficients (the ”coefficient window”),
as illustrated in Figure 3. This coefficient window has two
parameters which are varied in our evaluation: 1) The win-
dow size, i.e., the number of coefficients N selected in the
subset. Decreasing N results in a less accurate approximation
of the ideal Morlet wavelet, which expectedly decreases both
detection accuracy and computational overheads; and 2) The
window offset: The default filter is symmetric (offset = 0),
in which the most significant component of the impulse
response revolves around the center coefficients of the filter.
By shifting the window to the left (-) or right (+) from the
impulse response center, we attempt to obtain more favorable
detection properties by having this significant component

Impulse Response center

Coefficient window offset
Coefficient window size

Coefficient window

Fig. 3: Coefficient window (depicted for the real part of the
impulse response).

appear earlier or later in the selected coefficients.
In addition, the filter performance is a function of the

upper threshold Vth,h. As illustrated in Figure 2, a low Vth,h

minimizes the filter output required for seizure detection,
allowing ictal events to be detected accurately and fast at
the cost of increased FP s. Conversely, a high Vth,h may
decrease the number of FP s, while also lowering the number
of ictal events correct classified as such. To quantify the
filter performance as a function of Vth,h, we vary it between
V min
th,h ≤ Vth,h ≤ V max

th,h (in 64 uniformly distributed steps),
where V min

th,h (Vth,h = 1) and V max
th,h (Vth,h = 64) are the

thresholds at which ictal events are detected with 100% and
70% accuracy, respectively. Note that V min

th,h and V max
th,h are

chosen to be relative to the filter output: This allows for a
fairer comparison between different filters, which are known
to exhibit different output amplitudes.

3) Dataset: For our evaluation, we have considered a
dataset consisting of 29.75 hours (split in traces of 15
minutes) of prerecorded ECoG data from 24 subjects (mice),
obtained using a Digidata 1322A digitizer and a CyberAmp
amplifier (Molecular Devices, Axon Instruments, Sunnyvale,
CA). The data was annotated to determine time stamps at
which seizures start and end, where a seizure was defined as
(at least) 500 ms of SWD activity with a repetition rate of
at least 5 Hz [3], [5], [12]. The time stamps were obtained
using an in-house, off-line algorithm that uses peak detection
and validated visually by an experienced neuroscientist. The
dataset contains a total of 1914 seizures.

B. Experimental Results

In this Section, we evaluate various trade-offs between
detection performance and device autonomy (energy expen-
diture) for our algorithm. Our evaluation is structured as
follows: First, we describe the detection performance for a
symmetric filter (offset = 0), after which we consider the
effect of asymmetric filtering. We subsequently describe var-
ious pseudo-optimal filter settings (Pareto points), followed
by a comparison between detection performance and device
autonomy. Finally, we briefly compare our obtained results
to those reported in related work.

1) Detection performance: To understand the effects of
different window sizes N and thresholds Vth,h on the detec-
tion performance, we first restrict ourselves to a symmetric
filter (offset = 0). The resulting TPR, TNR, ADR and Td are
depicted in Figure 4 for three different threshold levels (Vth,h

= 25, 44, 64, i.e., relatively low, average and high threshold)
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Fig. 4: Detection performance for a symmetric filter (off-
set=0) as a function of the number of coefficients N and
various thresholds.

and are next discussed in-order. Recall that V max
th,h and V min

th,h

are chosen relative to filter output and detected ictal events
(TP s). As TPR is a direct function of the percentage of TP s
(and FNs), we find no change as a function of N for a given
Vth,h. Different thresholds, however, have a more profound
effect on TPR, i.e., increasing Vth,h results in decreased TPR.

Contrary to TPR, we find that TNR (Figure 4 (b)) is
substantially affected by both N and Vth,h and increasing
either parameter results in increased TNR. This is explained
as follows: First, the filter more accurately approximates
the ideal Morlet wavelet for larger N , resulting in a larger
difference in filter output between ictal events and inter-ictal
periods and, accordingly, a more accurate classification for
a given Vth,h. Second, increasing Vth,h requires a higher
filter output for an inter-ictal period to be classified as a
seizure, resulting in less FP s and more TNs and also
increasing TNR. As ADR is the average of TPR and TNR
and the former is relatively constant irrespective of N , ADR
(Figure 4 (c)) follows the same trends as TNR.

Finally, Figure 4 (d) depicts Td, which scales linearly as
a function of N for a given Vth,h. We attribute this scaling
to the symmetric nature of our filter, in which the significant
components of the impulse response are found in the center
coefficients of the filter. As a result, increasing N means
that a larger history of samples is required before the input
reaches this center point, leading to a delay in high filter
output and, therefore, a slower detection for a given Vth,h.
Conversely, lowering Vth,h may speed up detection due to
requiring a lower filter output.

The effect of N on Td motivates us to investigate an
asymmetric filter, in which the coefficient window is shifted
by an offset. In doing so, the resulting filter effectively

Offset
-20 -10 0 10 20

%

50

60

70

80

90

100

V
th,h

=64

V
th,h

=44

V
th,h

=25

(a) TPR

Offset
-20 -10 0 10 20

%

40

50

60

70

80

90

100

V
th,h

=64

V
th,h

=44

V
th,h

=25

(b) TNR

Offset
-20 -10 0 10 20

%

75

80

85

90

95

V
th,h

=64

V
th,h

=44

V
th,h

=25

(c) ADR

Offset
-20 -10 0 10 20

S
ec

0.4

0.8

1.2 V
th,h

=64

V
th,h

=44

V
th,h

=25

(d) Td

Fig. 5: Detection performance for an asymmetric filter (N
= 40) as a function of coefficient-window offset and various
thresholds.

deviates from a complex Morlet wavelet; however, we expect
that this allows us to achieve a better Td, while maintaining
similar detection accuracies. Figure 5 presents the detection
performance as a function of the offset with a fixed window
size of N = 40 (other N show similar trends and are,
therefore, not discussed in detail).

As expected, we find that detection accuracy (TPR, TNR,
ADR) is not substantially affected by various offset values,
attributed to maintaining the significant coefficients as part of
the coefficient window. Td (Figure 5d), however, is increased
when the coefficient window is shifted left (-offset) and
decreased by shifting to the right (+offset). That is, by
moving the significant peak of filter coefficients to earlier in
the coefficient window, we minimize Td while maintaining
similar accuracy.

Up until this point, we have described the effect of the
various algorithmic parameters (N , Vth,h and offset) have
on the seizure-detecting performance. That is, increasing
N increases TNR, ADR and Td; increasing Vth,h leads
to decreased TPR and Td and increased TNR and ADR;
and a positive filter offset shows a decrease in Td. Now
understanding these input-output relations, we exhaustively
evaluate all possible filter instances in order to derive a set
of Pareto points (i.e., solutions which are Pareto optimal).

The resulting Pareto front is depicted in Figure 6, where
different coefficient-window sizes (N ) are highlighted to
illustrate the various trends in each output value. Briefly
stated, we find a positive correlation between TPR and Td,
i.e, an increase in TPR results in a decrease in Td for a given
N . As TPR does not vary with N , this means that we can
get a ‘free’ improvement in Td by choosing smaller N . A
similar trend is observed in Figure 6 (c), i.e., reducing N
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Fig. 6: Pareto front for TPR, TNR, and Td. High-
lighted are points that correspond to various window sizes
(N=8,40,229).

allows us to obtain a similar TNR with reduced Td. Finally,
Figure 6 (d) depicts the counteractive behavior between TPR
and TNR, i.e., a high TPR leads to a low TNR and vice versa,
attributed to the way in which they respond to different Vth,h.

2) Device autonomy: In the previous subsection, we have
performed an in-depth study of the detection accuracy and
delay. However, as our algorithm is intended for wearable
or implantable devices, it has to consume minimal energy
to ensure device autonomy. We next describe the trade-offs
between filter performance and device autonomy, assuming
a reference battery capacity of 0.1 mWh.

Figure 7 depicts the battery lifetime (in weeks) as mea-
sured on the SiMS processor, as well as ADR and detection
delay. For simplicity, we restrict our evaluation here to filters
with maximum ADR for a given N (other filter-settings show
similar trends and are therefore not discussed in detail). Note
that the battery lifetime only varies with N as it defines
the number of arithmetic operations performed (see Eq. 1).
Logically, this means that the battery lifetime is reduced
when N is increased.

Starting from N = 7, we find a low ADR (86.83%)
and detection delay (of 0.58 seconds), with a large battery
lifetime (11.8 weeks). Increasing the window size favors
detection accuracy, yet increases both detection delay and
execution time (and in turn energy expenditure). As a result,
increasing N shows a (slight) improvement in ADR, up to
a maximum of roughly 92.27% (N = 70), yet diminishes
battery lifetime substantially (down to 1.18 weeks for the
same N = 70). Effectively, in order to increase detection
accuracy we require a better filter approximation which
can be achieved by using a larger window size at the
cost of device autonomy. Conversely, in order to increase
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Fig. 7: Device autonomy, ADR and Td as a function of the
number of filter coefficients.

battery lifetime we need low computational overheads which
are obtained by using less filter coefficients. The results
demonstrate that a careful trade-off can substantially benefit
device autonomy: For example, lowering the ADR by only
1.38% (to 90.89% for N=19), allows for an extension of
device autonomy by 3.7x (up to 4.4 weeks). Furthermore,
this decrease in N reduced detection delay by 0.17 seconds
(to 540 ms).

3) Comparison to related work: We can now compare
our algorithm to related works, the results of which are
presented in Table I. Here, we have chosen to compare the
design point with improved device autonomy (of 4.4 weeks)
described in the previous subsection. While not all related
works report on all design goals relevant to closed-loop
stimulation, the results in Table I suggest that algorithms
based on the complex Morlet wavelet (this work and [12])
may detect seizures considerably faster, albeit with a slight
reduction in ADR. Of course, it is possible to increase the
ADR if desired (at the cost of detection delay) by fine-tuning
the algorithm’s parameters.

Table I furthermore depicts the power consumption of
our and other lightweight implementations. Unfortunately,
these results can not be compared directly: Our evaluation
has considered the detection algorithm in isolation and has
excluded other components which are normally part of a
closed-loop system, such as circuits for signal conditioning,
analog/digital conversion and packaging effects. In contrast,
related work has included these components, producing a
higher (and more accurate) estimation of the power consump-
tion. On the other hand, our algorithm has been implemented
in software and is executed on a generic processor. This
has allowed us to rapidly explore the effect of the input
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TABLE I: Comparison of the performance of various seizure-detection systems.

Reference [1] [6] [10] [9] [7] [3] [12] This Work**
Detection delay (s) unknown unknown 13.5 8.5 3.3 0.97 0.50 0.54

Average detection rate 0.96 0.97 unknown 0.92 0.96 0.97 0.95 0.91
Power consumption (µW) unknown* 440 50 0.4 unknown unknown* unknown 0.107
*: Expected to have a high power consumption.
**: Only detection algorithm considered in evaluation.

parameters on our design goals; however, this approach is
known to be substantially less efficient than custom hardware
designs (employed in related work). In future work, we
intend to both provide a custom hardware implementation
and evaluate our algorithm in a more realistic closed-loop
setting.

V. CONCLUSION

In this paper we have performed a design-space explo-
ration into a novel and flexible seizure-detection algorithm,
which uses a complex Morlet wavelet filter and a static
thresholding mechanism. The algorithm has been evaluated
in terms of detection performance (true-positive rate, true-
negative rate, average-detection rate and detection delay)
and device (battery) autonomy, considering a variety of
algorithmic parameters (threshold levels and the number and
offset of filter coefficients). It has been shown that non-trivial
trade-offs can be made between various aspects of detection
performance and energy overheads. For example, a minimal
decrease in average-detection rate of 1.38% (from 92.27%
to 90.89%) allows for an increasing device autonomy by
3.7x, while promoting faster detection (from 710 ms to 540
ms). Our work demonstrates that future seizure-detection
algorithms for closed-loop stimulation should be carefully
adapted to its intended use, so as to both maximize its
detection performance and energy efficiency.
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