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Abstract—Usage of uninitialized values remains a common
error in C/C++ code. This results not only in undefined and
generally undesired behavior, but is also a cause of information
disclosure and other security vulnerabilities. Existing solutions
for mitigating such errors are not used in practice as they are
either limited in scope (for example, only protecting the heap),
or incur high runtime overhead.

In this paper, we propose SafeInit, a practical protection
system which hardens applications against such undefined be-
havior by guaranteeing initialization of all values on the heap
and stack, every time they are allocated or come into scope.
Doing so provides comprehensive protection against this class of
vulnerabilities in generic programs, including both information
disclosure and re-use/logic vulnerabilities.

We show that, with carefully designed compiler optimizations,
our implementation achieves sufficiently low overhead (<5% for
typical server applications and SPEC CPU2006) to serve as a
standard hardening protection in practical settings. Moreover,
we show that we can effortlessly apply it to harden non-standard
code, such as the Linux kernel, with low runtime overhead.

I. INTRODUCTION

The use of uninitialized memory in C/C++ programs
introduce vulnerabilities that are popular among attackers to
manipulate a program’s control flow or to disclose information.
In addition to the obvious issue of revealing sensitive data,
the exposure of metadata has become a more prominent prob-
lem in recent years, since information disclosure increasingly
becomes an essential prelude to successful exploits (e.g., to
circumvent ASLR or other hardening methods) [56]. Unfortu-
nately, concerns about the performance overhead have made
compiler writers reluctant to adopt strong mitigations against
this attack vector.

Languages such as Java and C# ensure the definite as-
signment of variables, requiring them to be initialized on all
possible paths of execution. Unfortunately, C and C++ do not
enforce this property. As a result, the vast body of existing
C/C++ code, which includes many runtimes and libraries for
safer languages, is potentially vulnerable to uninitialized read

attacks. Today’s compiler warnings and static analysis tools
flag only a small subset of these uninitialized reads, and worse,
the common occurrence of false positives in the warnings
means that programmers often ignore them altogether. Given
the growing popularity of uninitialized reads in real-world
exploits [21], [53], [8], [50], the current lack of comprehensive
protection is concerning. In this paper, we show that automatic
initialization of all values on the heap and stack at allocation
time is possible with minimal performance penalties.

Worryingly, C/C++ compilers can even introduce new
vulnerabilities when taking advantage of the fact that reading
uninitialized memory is ‘undefined behavior’; the optimiza-
tions applied by modern compilers can remove sanity checks or
other code in such circumstances [63]. Worse, recent research
[44] has also shown that many programmers are unaware of
these dangerous consequences. For C/C++ programs running
in production systems, there are few options for preventing
attacks that exploit uninitialized read errors. Solutions such as
valgrind [54] and MemorySanitizer [58], in widespread use
during the development process, are much too expensive for
use in production systems, even when using complex data-flow
analysis to reduce this overhead [65].

Clearing memory: The obvious mitigation for this problem
is to always clear memory. For instance, Chow et al. [11]
proposed to clear all memory at deallocation time. However,
they only obtained acceptable overhead for heap allocations
– not for the high frequency allocations and deallocations on
the stack. Moreover, the solution fails to address the problem
of undefined behavior. The PaX project [49] offers a limited
but very practical solution in the form of Linux kernel patches
which protect against common uninitialized value errors, in-
cluding gcc plugins. Recently, and concurrent to our work,
UniSan [38] proposed more comprehensive protection than
this against a narrower threat—information disclosure from the
Linux kernel—using data-flow analysis to initialize memory
and variables which might be disclosed to an attacker. While
both of these solutions provide acceptable overhead, neither
provide a complete solution for uninitialized values, and are
currently applicable to only the Linux kernel.

In this paper, we describe a comprehensive and practical
solution for mitigating these errors in generic programs, by
adapting the toolchain to ensure that all stack and heap
allocations are always initialized. SafeInit is implemented
at a compiler level, where low-overhead static analysis and
optimizations are available, and can be enabled using a single
compiler flag. We show that the overhead can be reduced
to acceptable levels, by applying a set of carefully designed
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optimizations; for example, these more than halve the overhead
of SafeInit on SPEC CINT2006 from 8% down to <4% (with
the remaining overhead largely due to excessively complex
code, which can be resolved using minimal-effort annotations).

Summarizing, our contributions are:

• We propose SafeInit, a compiler-based solution which
– together with a hardened allocator – automatically
mitigates uninitialized value reads by ensuring initial-
ization, both on the stack and on the heap.

• We present optimizations which reduce the typical
overhead of our solution to minimal levels (<5%), and
are straightforward to implement in modern compilers.

• We discuss our prototype implementation of SafeInit,
based on clang and LLVM, and show that it can be ap-
plied to the majority of real-world C/C++ applications
without any additional manual effort.

• We evaluate our work on CPU-intensive (including
SPEC CPU2006) and I/O intensive (server) applica-
tions, as well as the Linux kernel, and verify that real-
world vulnerabilities are successfully mitigated.

In summary, we argue that SafeInit provides a comprehen-
sive and practical solution to a serious real-world problem,
show that it provides significant advantages compared to
existing techniques and tools, and demonstrate that it offers
acceptable levels of overhead. We believe this system is
sufficiently practical to make it useful in production systems,
with overhead below the levels typically demanded for industry
adoption [60], and hope to see it become a standard ingredient
of the hardening transformations offered by modern compilers.

II. THREAT MODEL

Uninitialized read errors occur when a variable, or memory,
is used without having first been initialized. This can occur
after a stack variable comes into scope, or after heap memory
has been allocated. We consider an attacker seeking to exploit
any of the vulnerabilities caused by such reads of uninitialized
values, including information disclosure and use of unintended
values (such as function pointers). We assume that such
potential attackers have a copy of all binaries in use, and are
thus aware of details such as the exact stack layout chosen by
the compiler.

We assume the program has been already hardened against
other classes of vulnerabilities using existing (e.g., memory
safety) defenses. Although mitigating uninitialized value vul-
nerabilities can probabilistically mitigate some vulnerabilities
caused by other temporal (such as pointer use-after-free) and
spatial errors (such as out-of-bounds reads), there are existing
low-impact solutions – such as baggy bounds checking [2] –
which provide superior defenses against such attacks, and we
do not consider them in our threat model.

We also only consider C/C++ code. Extending this work
to similar languages should be possible (as shown, for exam-
ple, by existing compiler functionality for local variables in
Fortran), but in particular, custom assembly-language routines
fall outside the scope of our work.

III. BACKGROUND

Memory is constantly reallocated, and thus reused, in
almost all applications. On the stack, function activation frames
contain data from previous function calls; on the heap, allo-
cations contain data from previously-freed allocations. Issues
with uninitialized data arise when such data is not overwritten
before being used, extending the lifetime of the old data
beyond the point of the new allocation.

Many variables are clearly initialized before they are used;
as an example, consider an integer counter used only in a
for loop, which is explicitly assigned a new value for every
iteration of the loop. We can trivially see that such a variable
is always initialized before it is used.

On the other hand, the initialization state of a variable
which is only used if a complicated conditional is true may
depend itself on other conditionals, resolving of which would
require executing large portions of the program – or at least
extensive optimization and analysis.

Memory may also only be partially initialized; structures
and union types in C are often deliberately incompletely
initialized, and for simplicity or performance reasons, arrays
are often allocated with larger sizes than (initially) necessary
to store their contents.

In practice, reuse of memory is not only common, but also
desirable for performance reasons [17]. When it is unclear
whether a variable will be initialized before it is used, the
only practical and safe approach is to initialize it in all cases.

A. Sensitive data disclosure

The most obvious danger of information disclosure due to
uninitialized data is the disclosure of directly sensitive data,
such as encryption keys, passwords, configuration information
and the contents of confidential files. Chow et al. have dis-
cussed [10] that data lifetimes can last far longer than we
would expect, and that many unintentional copies of data may
be made.

In fact, even when all copies of such data are appar-
ently explicitly cleared, problems persist. Many programs call
memset to clear sensitive data; unfortunately, if the data is
no longer valid and thus no longer used after that point, such
calls can be (and are) optimized away by compilers. Common
‘workarounds’ which attempt to hide these calls from com-
piler analysis are often optimized by ever-improving compiler
analysis passes, and alternative functions (such as memset_s
and explicit_bzero) which compilers are prohibited from
optimizing away are not yet commonly available.

If the use of uninitialized data in a program is not directly
influenced by untrusted input, it is tempting to conclude
that the security consequences of these classes of issues is
otherwise minimal. However, experience has shown that a
wide range of potential attack vectors must be considered,
and this varied attack surface means that all uninitialized data
vulnerabilities should be taken seriously.

One illustrative example was a vulnerability [29] in the
PostScript font rendering on Windows, caused by failure to
initialize a temporary buffer which could be read by font
bytecode. By providing a font which rendered glyphs based
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on the contents of this buffer, JavaScript in a web browser
could disclose memory by reading back rendered pixels.

Similarly, information disclosure from kernels to userspace
programs, or from hypervisors to guest virtual machines, is a
common and serious issue [8]. Containers and virtual machines
running code from untrusted parties, or as a vital layer of
sandboxing from untrusted software such as JavaScript in web
browsers, are now a standard component of many systems. As
such, even code such as device driver interfaces and emulated
devices must be free of security issues.

B. Bypassing security defenses

Even where software does not make use of any seemingly
‘sensitive’ data, or such data is sufficiently isolated to avoid
the possibility of it being disclosed due to uninitialized data
issues, many modern software defenses depend on the secrecy
of sensitive metadata, and so information disclosure is still
a critical flaw. Stack ‘canaries’ provide an obvious example;
their protection relies on the canary value remaining secret.

Defenses such as address space layout randomization
(ASLR) [57] depend on the secrecy of pointers in general,
and since this is typically done by randomizing only one base
address, an attacker only needs to disclose a single pointer
to defeat the protection entirely. Such pointers may be code,
stack or heap pointers, and these are typically stored on both
the stack and the heap, so uninitialized value errors provide a
rich source of the pointer disclosures required to thwart such
information hiding.

Heap allocators may disclose heap metadata if they store it
inline, while other allocators are careful to maintain this sep-
arately. Some allocators re-use memory almost immediately,
which is important in modern high-performance allocators
which maintain per-thread pools. Notably, often disclosing
just a single byte of such metadata is enough to significantly
reduce security guarantees; disclosing 8 bits of a pointer can
significantly reduce ASLR entropy [55].

Another example is LLVM’s SafeStack defense, based on
work by Kuznetsov et al. [32], which attempts to provide
protection against arbitrary memory write vulnerabilities to the
stack, by hiding the pointer to the ‘safe’ (machine) stack, and
moving unsafe variables to a separate stack. However, at the
time of writing, it can be trivially defeated by disclosing the
contents of an uninitialized stack buffer; these contents are
within the bounds of a stack variable, and so remain on the
‘safe’ stack, but almost always contain safe stack pointers.

C. Software exploitation

Other vulnerabilities caused by uninitialized data allow
attackers to directly hijack control flow. For example, virtual
function calls may be made using uninitialized local variables
which are meant to contain (pointers to) C++ objects. Potential
attackers can often influence the contents of the stack or heap
by causing specific computation or a specific set of calls to be
made [40]; their ability to control the contents of a specific part
of memory depends on factors which seem difficult to predict,
such as the results of the compiler’s stack slot allocation
algorithm, but which can often easily be determined by an
attacker with access to the compiled binary.

This is far from a new problem; Microsoft described
an arbitrary write vulnerability due to an uninitialized stack
variable in Microsoft Excel in 2008 [45], and in 2010, Kees
Cook disclosed [12] an arbitrary Linux kernel memory write
vulnerability caused by an uninitialized structure on the stack.

A common mistake is to fail to initialize variables or
buffers on the execution path taken when an error is encoun-
tered. For example, Samba had a vulnerability[61] caused by
failure to check the error value returned by a function before
using a pointer value which was only initialized in the error-
free path. Similarly, a bug in Microsoft’s XML parser[1] made
a virtual function call using a pointer stored in a local variable
which was not initialized on all execution paths. By ‘spraying’
the stack with pointers using JavaScript, attackers could control
the contents of the memory where the variable was stored, and
exploit this vulnerability from within a web browser.

It is clear that all of these vulnerabilities must be taken
seriously, and that preventing information disclosure addresses
only a subset of uninitialized value vulnerabilities.

D. Detection tools

Rather than attempting to mitigate uninitialized value er-
rors, there are a variety of tools which attempt to detect
them during the development process, allowing them to be
manually corrected by the programmer. Compiler warnings and
static analysis tools are limited by their nature [33], and often
themselves contain bugs [59]. Reporting all values which may
be uninitialized is counter-productive, since when presented
with more than a handful of false positives, programmers will
start to simply ignore the warnings. This means that any useful
tool is forced to err on the side of caution in reporting; the
authors of one commercial static analysis tool, Coverity, state
that [6] “when forced to choose between more bugs or fewer
false positives we typically choose the latter”.

More fundamentally, compiler warnings and detection tools
only report problems, rather than fixing them. This can lead to
incorrect and dangerous fixes, as illustrated by the 2008 Debian
OpenSSL flaw [66]; a patch ‘fixing’ a valgrind warning about
uninitialized data also removed the code which added entropy
during key generation, leading to the widespread generation
and use of predictable keys.

E. Stack variables

A function stack frame contains copies of local variables
which are either too large to be stored in registers, or which
have their addresses taken (for example, to be passed to another
function). The stack also generally contains spilled copies
of other local variables and compiler-generated temporary
variables, as well as function arguments, frame pointers and
return addresses. Given the constant re-use of stack memory,
these frames provide a rich source of sensitive data.

Modern compilers use sophisticated algorithms for register
and stack frame allocation [42], and both temporaries and
variables with non-overlapping lifetimes can be assigned the
same portion of a stack frame (or registers). This reduces
memory usage and improves cache locality, but means that
even clearing registers and stack frames before/after a function
call is insufficient to avoid all potential uninitialized variables.
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main() {
int x;
printf("%d", x);

}

(a) C code

define @main() {
%x = alloca i32, align 4
%0 = load i32, i32* %x
call @printf(..., i32 %0)

}

(b) LLVM bitcode, before mem2reg

define @main() {
call @printf(..., i32 undef)

}

(c) LLVM bitcode, after mem2reg

Fig. 1. LLVM transforms uninitialized reads into undef values early in the optimization process; later passes cannot recover the information removed in (c)

for (i = 0; i < n; ++i) {
int x;
if (i == 0) {

x = getSecretValue();
}
doSomething(x);

}

Fig. 2. Memory re-use for local variables in a loop; doSomething will be
passed the secret value in all loop iterations, not just the first

Even when stack coloring is disabled, and every local
variable is allocated a separate portion of an initialized stack,
uninitialized variables can still be a problem. Memory re-use
in a function stack frame also occurs inside loops, such as in
Figure 2; here, a variable is initialized during the first iteration
of a loop, but not in later iterations.

F. Undefined behavior

Undefined behavior [63] occurs when a C/C++ program
fails to follow the rules imposed by the language. Most
importantly in the context of our discussion, this is the
case when code reads uninitialized stack variables, or even
uninitialized heap allocations. The C/C++ standards state that
permissible consequences of undefined behavior includes the
compiler’s code generation “ignoring the situation completely
with unpredictable results”, but many programmers are un-
aware [44] of the fact that these consequences have more
serious consequences for their compiled binaries than simply
producing code which will read potentially uninitialized data.

This is not a merely theoretical problem, but a serious
practical issue; to enable the maximum number of opti-
mizations, especially in code which may be expanded from
templates and macros and eventually largely be discarded as
unreachable, modern compiler transforms (such as those used
by LLVM [34]) take advantage of this undefined behavior on a
large scale. Unfortunately, such transformations may interpret
undefined values (and thus, also uninitialized values) as any
value which makes optimizations more convenient, even if this
makes program logic inconsistent. These situations often only
become apparent after other compiler transformations have
already been applied, and cannot be detected by dynamic
analysis tools, since they rely on the machine code which has
been generated after this process.

Even a very basic level of compiler optimizations will
cause problems with such code. For example, Figure 1 shows
clang/LLVM generating undef values due to an uninitialized
local variable. This is caused by the mem2reg pass, which
converts local variables to SSA form; this transformation is a

cc -fsafeinit file.c

C/C++ SourceModified compiler
frontend

Compiler IR Initialization pass

Optimizer

Existing compiler
optimizations

Improved dead
store elimination

BinaryHardened
allocator

Fig. 3. High-level overview of SafeInit

prerequisite for almost all other compiler optimization passes
or analyses. This illustrates why hardening transformations
must be run before any other optimizations, and most impor-
tantly, why they must be performed in the compiler itself.

This also limits the analysis available to such transforma-
tions; any analysis must be performed on the initial, unop-
timized code from the frontend. This not only reduces the
accuracy of any analysis, but also has a serious impact on
performance; these problems are particularly troublesome for
interprocedural analysis, and in any case, other functions may
be unavailable until link-time optimization (LTO) is performed.
Attempting to delay all optimization until LTO time has a
severe impact on compilation time, making it far less practical.

IV. OVERVIEW

SafeInit mitigates uninitialized value problems by forcing
the initialization of both heap allocations (after their alloca-
tions) and all stack variables (whenever they come into scope).
This is done by modifying the compiler to insert initialization
calls directly at all such points.

In order to provide both practical and comprehensive
security, this instrumentation must be done within the compiler
itself. SafeInit can be enabled by simply passing an additional
hardening flag during the compilation process. As can be seen
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in Figure 3, this enables an additional compiler pass which
adds the necessary initialization.

A naive initialization approach would lead to excessive
runtime overhead, and an important element of our system
is a customized hardened allocator. This is able to avoid
initialization in many cases by taking advantage of extra
information, combined with our compiler instrumentation.

Finally, the SafeInit optimizer provides non-invasive trans-
formations and optimizations which we run alongside existing
compiler optimizations (themselves modified where neces-
sary), as well as the final component, an extension of existing
‘dead store elimination‘ optimizations. These build on top of
our initialization pass and allocator, performing more extensive
removal of unnecessary initialization code, demonstrating that
the runtime overhead of our solution can be minimized.

Perhaps most importantly, SafeInit is practical to imple-
ment in modern compilers. Our system requires minimal
changes and is non-invasive; no new analyses are required,
and the extended optimizations we propose are not specific to
SafeInit. Our design is also compatible with recent develop-
ments such as ThinLTO [28], where later optimization passes
may not have access to the IR/bitcode of called functions.

V. MITIGATING UNINITIALIZED VALUES

A. Initialization pass

SafeInit initializes all local variables before their first use,
treating the point at which variables come into scope (for
example, in a loop) as a newly-allocated variable. We propose
inserting initialization code at all such points where a stack
variable comes into scope; the necessary scope information is
provided by the compiler frontend.

Specifically, SafeInit’s stack hardening pass modifies the
compiler’s intermediate representation (IR) of the code being
compiled and inserts a store instruction (ideally, a memset
builtin/intrinsic) after every variable comes into scope; other
optimizations can later remove or simplify these. This clears
all of the memory allocated for the variable, including any
padding within a structure, or between array elements.

B. Hardened allocator

SafeInit’s hardened allocator ensures that all newly-
allocated memory is cleared to zero before being returned to
the application. We do this in the allocator for safety – we
override all heap allocation functions to ensure these hardened
allocator functions are always used – as well as to improve
performance by taking advantage of the extra information
available to the allocator.

Importantly, the compiler is aware that our hardened allo-
cator is in use; any code using allocated memory is no longer
making use of undefined behavior, and cannot be modified or
removed by the compiler.

All memory pages allocated by the operating system ker-
nel are already cleared to zero, and so allocators can take
advantage of this and avoid clearing such pages. Although
the overhead of keeping track of this for small allocations is
excessive, and so small allocations must always be cleared at

char err_msg[MAX_MSG];
...
if (error) {
setErrMessage(err_msg);
printf(err_msg);
return error;

}

Fig. 4. Typical code using error message buffer; the buffer need not be
initialized unless the branch here is taken.

allocation time, large allocations are at least several pages in
size, and often allocated by using mmap directly.

Modern operating systems also provide support for
clearing regions of such memory directly (such as
MADV DONTNEED on Linux) by releasing the underlying
pages; while this comes with potential performance downsides
[31], it is already used by modern allocators to minimize
memory usage, and is ideal for our needs. By ensuring that
large allocations are always released, we can ensure they
will be cleared even if they are reused for another allocation,
without incurring any performance penalty for clearing areas
of memory which will not be used.

Our allocator also exports non-initializing variants of al-
location functions; the requested memory is not zeroed when
these are called, but the gap between the requested allocation
size and the true allocated size is always cleared. An applica-
tion may later make a realloc call which can lead to the
re-use of this space, and keeping track of individual allocation
sizes consumes more memory and leads to excessive runtime
overhead (we observed overheads of >5%).

C. Optimizer

Our optimizer design provides several efficient and practi-
cal optimizations which improve the performance of SafeInit
while being efficient and non-invasive. The primary goal of the
optimizer is to make simple changes which will allow the many
other standard optimizations available in modern compilers to
remove any unnecessary initializations. We hope that SafeInit
will become a standard hardening technique, and so it needs
to be as practical as possible; in particular, we need to avoid
adding complex or invasive analysis.

1) Sinking stores: Ideally, stores to local variables should
be as close as possible to their uses. This is important for cache
locality, and for minimizing the memory usage of stack frames;
minimizing the lifetime of a variable allows stack coloring
algorithms to allocate stack frame space more efficiently.

Our optimizer attempts to move our initialization stores to
the dominating point of the uses of a variable. Importantly,
this also avoids unnecessary initialization; variables which are
unused in certain paths need only be initialized in the paths
where they are used. A common example is where variables
are only used in error paths, such as with the code in Figure 4.
This code path is not executed during normal execution, and
we do not need to initialize the buffer until we reach a path
in which it will be used.

If this dominating point of the uses of a variable is
reachable from itself, and it does not go out of scope when
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int buf[50];
for (int i = 0; i < 50; ++i)

buf[i] = 1;

Fig. 5. Example of initialization using a loop; ‘buf’ is fully initialized but
this code cannot be converted into a memset.

sprintf (t3, "%s%s;", t1, t2);
strcpy (t1, t3);

Fig. 6. t3 is a ‘safe’ string buffer (from gcc in SPEC CPU2006) which does
not need initialization

following this execution path, then it is not an appropriate
place for initialization; this typically occurs if the first stores
to a variable are inside a loop. To resolve this, we instead use
an initialization point which also dominates all the predecessor
basic blocks of such dominating points.

2) Detecting initialization: We propose detection of typical
code which initialize arrays (or portions of them), which allows
other compiler optimizations to remove or shorten previous
stores which are revealed to be overwritten.

Typical compiler optimizations perform this only for indi-
vidual store instructions, or intrinsics such as memset. While
modern compiler transforms attempt to convert some loops to
memset calls [18], this is only possible if a single-byte (or
in some cases, two-byte) pattern is used. This is insufficient
for many common cases, such as initializing an array of (four-
byte) integer values to the value ‘1’, as shown in Figure 5.
Our design detects such code, treating these loops as if they
were single stores which cover the entire range they initialize.

3) String buffers: Buffers which are used to store C-style
null-terminated strings are often only used in a ‘safe’ manner,
where the data in memory beyond the null-terminator is never
used. We propose a low-cost check which catches simple
cases, such as that in Figure 6; buffers which are only passed
to known C library string functions (such as strcpy and
strlen) are ‘safe’. When initializing with zero, only the first
byte of such buffers must be initialized.

Compilers already know about and detect such ‘built-in’
string functions, so we can take advantage of their existing
infrastructure to detect these functions; there is no need to
add annotations. Where the optimizer can prove that the string
is always initialized, the initialization can later be removed
entirely; however, this often only becomes clear after further
optimizations have been applied.

D. Dead Store Elimination

To minimize the performance cost of initialization, SafeInit
also includes a variety of improved optimization passes. These
are more complex than our other optimizations, and may
not always be necessary to obtain low overhead. However,
they resolve real situations which we found to introduce
unnecessary overhead when using our hardening passes.

In particular, we need so-called ‘dead store elimination’
(DSE) optimizations, a standard class of compiler optimiza-
tions [4] which remove stores which are always overwritten by

row *r = malloc(sizeof(row));
r->row_num = 0;
r->length = 0;
r->user_word = NULL;

Fig. 7. Example of removed zero stores (from ‘espresso’); the memory
returned from malloc is already cleared with zero values.

int buf[n];
memset(buf, 0, n);
memset(buf, 1, n);

Fig. 8. Example of an unnecessary non-constant-length store; the first
memset can always be removed.

another store without ever being read. We propose DSE-style
optimizations which are particularly appropriate for removing
initializations; existing optimizations are often ill-suited to this
task, since these situations occur less frequently in other code,
and so are less of a priority for compiler development.

Only relatively simple DSE optimizations are available in
current compilers, generally limited to only statically-sized
stores within a single basic block. However, this is an active
area of compiler development, and as we will later discuss,
support for these forms of complex DSE is slowly being
introduced in mainstream compilers. The optimizations we
present here serve to demonstrate demonstrate the importance
of this work and the potential performance improvements
which are possible from more intensive optimization.

1) Heap clearing: Since all heap allocations are guaranteed
to be initialized to zero, our compiler can remove any zero
stores to freshly-allocated heap memory (treating all allocation
functions as equivalent to calloc); an example is shown in
Figure 7. Similarly, any loads from freshly-allocated memory
are known to be zero (rather than being undefined behavior),
and we can replace them with a constant value.

If memory is fully initialized to a non-zero value, then our
optimizer can also rewrite the allocator call to an alternative
allocation function which skips any potential (unnecessary)
initialization; however, we want to be sure that only these
instances are left uninitialized by our custom allocator.

2) Non-constant-length store removal: Dead Store Elimi-
nation is generally only performed when the stores are of a
known constant length; we propose transforming stores with
non-constant lengths, which is important to remove unneces-
sary initializations of both dynamic stack allocations and heap
allocations. The simplest such situations are when an entire
existing store is overwritten, such as the code in Figure 8. Our
DSE also removes stores of a non-constant size, such as some
of our initialization stores, when they are entirely overwritten
by later stores.

3) Cross-block DSE: Our optimizer also performs Dead
Store Elimination across multiple basic blocks. This is an
active area of improvement for existing compilers, but is far
more relevant when universal initialization is introduced, and
is necessary to enable many of the optimizations below.

We need to remove both stores which are partially or
completely overwritten by other stores (standard DSE) as well
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int result_buf[BUF_SIZE];
return shared_func(data, result_buf);

Fig. 9. Example of write-only/‘scratch’ buffer; initialization is unnecessary if
shared_func only writes to the pointer provided as the second argument.

as stores which are never used (for example, because the
value goes out of scope before being used), and while we are
primarily concerned about memset, we also remove normal
stores. New opportunities for rewriting heap functions may
also be revealed during this process, and our optimizer also
applies these optimizations here.

4) Non-constant-length store shortening: To enable other
optimizations, particularly involving string or other library
functions, we also attempt to shorten stores by non-constant
lengths. For example, if the first x bytes of an array are initial-
ized, then we may be able to shorten an earlier initialization by
x bytes, assuming that the value of x does not change between
the stores. However, the compiler must either be able to prove
that x is never larger than the size of the array, or add an
additional (and potentially expensive) bounds check.

In practice, writing beyond the bounds of an array is
undefined behavior, and existing compiler optimizations take
advantage of this to make assumptions. If execution is always
guaranteed to reach the second store after it has reached the
first, the compiler can assume that the second store does not
write beyond the size of the array, and thus that the first store
may always be shortened.

The conservative approach proposed by our design fails to
remove some stores which, in practice, are always safe. As
we discuss in implementation, this turned out to be a serious
limitation. The performance overhead of this optimization also
means that it is only worthwhile on relatively large stores; we
only apply it for stack allocations beyond a fixed size.

5) Write-only buffers: Sometimes, memory is allocated, but
never written to. Removing unused local variables is known to
be an important optimization [27], but typically interprocedural
analysis has been unnecessary. A typical example is shown in
Figure 9, where a function requires a memory buffer as an
argument for storing results, but the caller never reads from
this buffer, simply discarding the content. Our initialization
further complicates this, by adding a new unnecessary write
to initialize such buffers.

If the called function never reads from the buffer, then the
entire buffer is unnecessary. One approach is to clone such
functions and remove the arguments in these cases, enabling
removal of the stores. However, this can dramatically increase
code size; inlining or cloning can be very expensive, and
our design aims to remain practical by avoiding the need for
any additional interprocedural analysis. Instead, we annotate
allocations and function (pointer) arguments which are only
written to. If we can then show that portions of memory are
only stored to, and not read, then all the stores can be removed.

VI. IMPLEMENTATION

We implemented a prototype of SafeInit by extending the
clang compiler, and the LLVM compiler framework [35]. As

discussed, the dead store optimizations which are vital for
acceptable performance are an active area of development, so
we based our work on a recent pre-release version of the code
(LLVM revision 269558, from mid-May 2016).

A. Initialization pass

We implemented stack clearing as an LLVM pass, which
we run before any other optimization pass is allowed to run
– mostly importantly, before mem2reg, which will introduce
undef values when an uninitialized stack variable is read.

Local variables in LLVM are defined by using the alloca
instruction; our pass performs initialization by adding a call to
the LLVM memset intrinsic after each of these instructions.
This guarantees that the entire allocation is cleared, and are
transformed into store instructions where appropriate.

B. Hardened allocator

We implemented our hardened allocator by modifying
tcmalloc, a modern high-performance heap allocator [22].

The underlying pages for the allocator are obtained using
mmap or sbrk, and are guaranteed to initially be be zero. We
force the use of MADV DONTNEED (or equivalent) when
freeing any such allocations, and so large heap allocations are
always zero, and need not be initialized. The performance over-
head of tracking the initialization status of smaller allocations
is excessive, so we simply clear all other heap allocations to
zero before the allocator returns a pointer.

We also modified LLVM to treat reads from newly-
allocated memory as returning zero, rather than undef, when
SafeInit is enabled. As discussed, this is vital for avoiding the
unpredictable consequences of undefined values.

C. Optimizer

We implemented our proposed sinking stores optimization
for stack initialization by moving our inserted memset calls
to the dominating point of all uses of the alloca (ignoring
those which do not actually use the variable, such as casts or
debug intrinsics). When compiling with optimizations enabled,
clang will emit ‘lifetime’ markers which indicate the points
at which local variables come into scope; we modified clang
to emit appropriate lifetime markers in all circumstances, and
insert the initialization after these points.

The alloca instructions corresponding to local variables
are placed in the first basic block, which is necessary for the
majority of LLVM optimizations to function correctly, and for
stack coloring to be performed. However, dynamic allocation
of stack space within a function may not be in the first block
(such as when an alloca call is made from C/C++ code); in
these circumstances, we have to also ensure that initialization
is not performed before the allocation takes place.

We implemented initialization detection optimization by
adding a new intrinsic function, ‘initialized’, which has the
same store-killing side effects as memset, but is ignored by
code generation. By extending components such as LLVM’s
loop idiom detection to generate this new intrinsic where
replacing code with a memset is not possible, we allow
other existing optimization passes to take advantage of this
information without the need to modify them individually.
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D. Dead Store Elimination

We implemented the other optimizations described above
by extending existing LLVM code, keeping our changes mini-
mal where possible. Our implementation of write-only buffers
made use of the patch in D18714 (since merged), which added
the basic framework for a writeonly attribute.

We also based our implementation of cross-block Dead
Store Elimination on the (rejected) patch in D13363. Due to
performance regressions, we disable this cross-block DSE for
small stores (≤8 bytes); we also extended this code to support
removing memset, and shortening such stores.

Our prototype currently only applies non-constant short-
ening to memset calls which overwrite an entire object, and
requires that they be at least 64 bytes for the efficiency reasons
discussed above. LLVM’s limited support for range analysis
severely limits the current optimization opportunities for such
shortening, since in the majority of cases we are unable to
prove accesses are safe without performing our own analysis.

Since our goal is to show techniques which are practical
to implement without needing additional analysis, we limited
ourselves to the typical analyses which are used by existing
in-tree code in such circumstances. These include checking
known bits, and making use of the ‘scalar evolution’ code for
loop variables. In turn, these limitations remove opportunities
for library call optimizations; we found that even our optimiza-
tions for string functions are of limited usefulness (outside of
artificial micro-benchmarks) due to the effect of these safety
checks.

E. Frame clearing

To put our evaluation into context, we also implemented an
alternative compiler hardening pass which clears the portion
of each frame reserved for local variables in every function
prologue. The performance of this frame clearing provides an
estimate of the lower bound for these naive approaches; we
apply our normal stack hardening pass to protect non-static
(dynamically-allocated) local variables.

This improves performance compared to simply clearing all
frames, since we do not clear space reserved for other purposes
such as spilled registers (although our optimized clearing code
sometimes clears part of this space, for alignment reasons).
This approach also fails to provide guarantees for overlapping
or re-used variables within the function; any changes to resolve
these (such as disabling stack coloring to avoid overlapping
variables) resulted in significantly worse performance.

VII. DETECTION

Our hardened toolchain can also be combined with a
modern high-performance multi-variant execution system such
as [30] to provide a detection tool, inspired by DieHard [5]. We
compile multiple versions of the same application, initializing
memory to different values in each variant. This allows us to
perform high-performance detection of the majority of uses of
uninitialized values, including those which would typically be
removed by compiler optimizations or only stored in registers,
without the false positives resulting from ‘harmless’ memory
reads which do not affect the output. Example usage can be
seen in Figure 11.

int deny_access;
if (deny_access) {
printf("Access denied.");
return 0;

}
printf("Access granted.");

Fig. 10. (Simplified) example of an uninitialized read which is optimized
away by existing compiler transforms; in this example, the code in the branch
is typically removed entirely.

$ var-cc -O2 example.c
$ multivar ./example-v0 ./example-v1
! SYSCALL MISMATCH for variants v0 and v1
˜ 0: write(1, "Access granted.", 15)
˜ 1: write(1, "Access denied.", 14)
== Backtrace ==
ip = 7271a9620 __write+16
...
ip = 727120de9 _IO_printf+153
ip = 4007ce check_access+366

Fig. 11. Example of an uninitialized read being detected, using optimized
builds of the code in Figure 10; since there is no uninitialized memory usage
in the optimized binaries, tools such as valgrind fail to detect such cases.

Filling memory with a constant value is much faster than
using random values, so we fill all uninitialized bytes of
memory in each variant with the same constant. Some opti-
mizations are no longer possible when using non-zero values;
in particular, we need to clear all heap memory, since the zero
pages returned from the kernel are no longer appropriate.

However, multi-variant systems do not necessarily require
synchronization (they need not run variants in ‘lockstep’);
system calls need only be executed for one of the variants, the
so-called ‘leader’. Since our hardening has already mitigated
potential security issues, there is no need to run the variants
in lockstep. We initialize the values of the leader process with
zero, allowing it to run ahead of the other variants, which
reduces the overall runtime impact of this slower initialization.

VIII. EVALUATION

Our benchmarks were run on a (4-core) Intel i7-3770
with 8GB of RAM, running (64-bit) Ubuntu 14.04.1. CPU
frequency scaling was disabled, and hyperthreading enabled.
Transparent Huge Pages were turned off, due to their extremely
unpredictable effect on runtime and memory usage – this is a
commonly-recommended vendor configuration, and although it
has a negative effect on some benchmarks, it does not appear
to meaningfully change our overhead figures.

Our baseline configuration is an unmodified version of
clang/LLVM, using an unmodified version of tcmalloc. As
well as comparing this to SafeInit, we also present results for
the naive approach, which simply applies our initialization
pass without any of our proposed optimizations, using a
hardened allocator which simply zeroes all allocations. We
do make use of a modified compiler which performs local
variable initialization and ensures that safety is maintained; for
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Fig. 13. SPEC CINT2006, runtime overhead (%) of frame initialization

example, zero is propagated from heap allocation sites, rather
than undef.

A. SPEC CPU2006

We built all C/C++ benchmarks in SPEC CPU2006 us-
ing LTO and -O3, except the specrand test benchmark. We
present overhead figures for the median of 3 runs, using the
reference dataset. The runtime overhead of applying SafeInit
to CINT2006 is shown in Figure 12.

SafeInit incurs a low performance cost for many bench-
marks, even without our optimizer; these are generally CPU-
bound and/or make their allocations only at startup. For exam-
ple, mcf already uses calloc for allocating heap memory,
and does not make significant use of the stack. However,
other benchmarks experience significant runtime overhead; the
(geometric) mean of the runtime overhead is 8%, when applied
without our optimizer.

Applying our optimizer reduces the overhead for the re-
maining benchmarks significantly, as expected, resulting in
average overhead for CINT2006 of 3.5% compared to our
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Fig. 15. SPEC CINT2006, runtime overhead (%) of SafeInit’s optimizer
without hardening applied

baseline compiler. Results for CFP2006 are similar, as shown
in Figure 14, with an average overhead of 2.2%.

Table I provides details of the number of allocas (repre-
senting the number of local variables, plus occasional copies of
arguments or dynamic allocations) for each benchmark. Many
initializations are transformed or removed during optimization,
but the table contains the number of initializations which are
still represented as a memset in the final post-optimization
bitcode, both with and without our customised optimizations.
Note that these may still be converted into stores during
code generation, and that although the optimizer often fails to
remove initializations entirely, it can still obtain performance
benefits due to transforming, moving or shortening them. The
table also provides the (stripped) binary size; in many cases,
the impact of the initialization makes no difference to the final
binary size whatsoever, and in the worst case it is minimal.

When our optimizer is enabled without hardening, only a
minimal performance improvement of around 0.3% is seen, as
shown in Figure 15. The highest overhead is for h264ref; the
impact of this overhead can also be seen in Figure 12 above.
We do not believe the regressions seen here are fundamental,
but in any case, our other overhead figures include the effect of
any small regressions. If necessary in practice, any problematic
individual optimizations could be adjusted or simply disabled
when compiling without hardening.

The mean overhead when using our optimizer as the
baseline is 3.8%; the primary contributors to this differ-
ence are small performance regressions of perlbench and
xalancbmk, and a reduced performance improvement for
omnetpp. The latter has a >1.5% performance improvement
against both baselines in any case, thanks to the combination
of our optimizations and improved cache behavior.

Figure 13 presents the performance overhead of our frame
initialization pass, combined with our hardened allocator.
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TABLE I. SPEC CINT2006 DETAILS. #INITS IS THE NUMBER OF LARGE INITIALIZATIONS LEFT AFTER EXISTING COMPILER OPTIMIZATIONS AND OUR
OPTIMIZER HAVE RUN, RESPECTIVELY. SIZE IS THE (STRIPPED) BINARY SIZE.

Benchmark #allocas #inits (naive) #inits (opt) size (baseline) size (naive) size (optimizer)

astar 790 7 4 43736 43736 (0%) 43736 (0%)
bzip2 679 23 20 80488 84584 (5.1%) 84584 (5.1%)
gcc 31551 650 596 4108712 4133288 (0.6%) 4120992 (0.3%)
gobmk 17039 325 300 3554640 3566928 (0.3%) 3566928 (0.3%)
h264ref 4229 122 122 630664 638856 (1.3%) 638856 (1.3%)
hmmer 3333 19 18 189592 189592 (0%) 189592 (0%)
libquantum 567 3 2 31336 31336 (0%) 31336 (0%)
mcf 184 1 1 19040 19040 (0%) 19040 (0%)
omnetpp 7638 110 110 806712 810808 (0.5%) 814904 (1%)
perlbench 12327 175 167 1272584 1284872 (1%) 1280792 (1%)
sjeng 770 61 48 133976 133976 (0%) 133976 (0%)
xalancbmk 92396 1701 1302 3871528 3908392 (1%) 3892008 (0.5%)
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Fig. 16. requests/sec overhead (%) for hardening lighttpd

Given the average overhead of 13.5%, it is clear that such
frame-based initialization without the benefit of compiler op-
timizations is too slow. Despite this simpler approach offering
considerably less safety, only bzip2 gains significant perfor-
mance benefit from these reduced guarantees.

We also investigated another approach for weakening guar-
antees to improve performance, by increasing the lifetimes of
variables inside loops so they would only be initialized once,
before the loop. The impact of this on stack coloring and
register allocation resulted in worse performance for almost all
benchmarks (and average overhead for CINT2006 of >5%).

B. Servers

We evaluated the overhead of SafeInit for less
computationally-intensive tasks by using two modern
high-performance web servers, nginx (1.10.1) and lighttpd
(1.4.41). We built the web servers using LTO and -O3. Since
they are I/O bound when used on our 1gbps network interface,
we benchmarked them using the loopback interface. This is
an extreme scenario; in practice, the overhead of SafeInit is
insignificant for these servers.

We used apachebench to repeatedly download 4Kb, 64Kb
and 1MB files, for a period of 30 seconds. We enabled
pipelining, used 8 concurrent workers, and used CPU affinity
to reserve a CPU core for apachebench. We measured the
overhead for the median number of requests per second, across
10 runs; we did not see significant amounts of variance.

lighttpd: We attempted to configure lighttpd to optimize
throughput, allowing 100 requests per pipelined connection,
and evaluated both the sendfile (default) and writev
network backends. The results are shown in Figure 16.
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Fig. 17. requests/sec overhead (%) for hardening nginx

Average overhead is minimal when sending the large
(1MB) file. In the extreme case of the small 4Kb file, where
we process almost 70,000 requests per second, overhead is
still less than 3%; the majority of execution time here is spent
parsing incoming requests and maintaining internal structures.

Much of lighttpd’s overhead for these tiny requests is
caused by small heap allocations for strings in the chunk
queue; only the first byte of these is initialized by the caller, but
our hardened allocator clears the entire allocation for safety.
The remaining overhead for both situations is due to lighttpd’s
writev code, used by both backends for writing these al-
locations to the network, uses a fixed-size stack buffer. Our
current optimizer fails to optimize away the unused portion of
the buffer, but improved optimizations or minor changes to the
code could reduce the overhead further. In fact, older versions
of lighttpd used a larger buffer in this code, but recently a
“sane limit” was imposed on the buffer size; such modifications
demonstrate how general code improvements can also reduce
the overhead imposed by SafeInit.

nginx: We tested nginx both with a default configuration
(which is similar to the one we used for lighttpd) and with
sendfile enabled (which significantly increases performance for
serving the 64Kb and 1MB files). All logging was disabled;
our overhead is slightly reduced when logs are enabled. The
results are shown in Figure 17.

Overhead of full SafeInit, including our optimizer, is not-
icably higher with the 64Kb files; however, the overhead of
SafeInit remains below 5% in all circumstances.

nginx makes use of a custom pool-based memory allo-
cator, which makes it difficult for our optimizer to analyse
code. However, we manually verified that memory is not (by
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TABLE II. PHP 7.0.9 MICRO-BENCHMARK RESULTS (IN SECONDS)

bench.php micro_bench.php

baseline 1.029 3.983
new optimizer 1.007 (-2.1%) 3.879 (-2.6%)
naive SafeInit 1.004 (-2.5%) 3.994 (0.3%)
SafeInit 0.999 (-3%) 3.897 (-2.8%)

TABLE III. LMBENCH RESULTS. TIME IN MICROSECONDS, PLUS %
OVERHEAD ABOVE BASELINE.

Sub-benchmark Baseline w/Optimizer Stack SafeInit

syscall null 0.0402 0.0402 (0%) 0.0402 (0%)
syscall stat 0.2519 0.2369 (-5.9%) 0.2571 (2.1%)
syscall fstat 0.0739 0.0742 (0.4%) 0.0775 (4.9%)
syscall open 0.7049 0.6778 (-3.8%) 0.7119 (1%)
syscall read 0.0817 0.0819 (0.2%) 0.0819 (0.2%)
syscall write 0.0981 0.0979 (-0.2%) 0.0971 (-1%)
select tcp 4.5882 4.6714 (1.8%) 4.6497 (1.3%)
sig install 0.0964 0.0977 (1.4%) 0.1000 (3.7%)
sig catch 0.6534 0.6495 (-0.6%) 0.6648 (1.7%)
sig prot 0.2220 0.2210 (-0.4%) 0.2350 (5.9%)
proc fork 65.5904 66.6386 (1.6%) 67.7927 (3.4%)
proc exec 208.8846 209.8519 (0.5%) 212.3462 (1.7%)
pipe 3.3500 3.3834 (1%) 3.4145 (1.9%)
tcp 6.7489 6.7163 (-0.5%) 6.6835 (-1%)

bw pipe (MB/s) 4988.09 4974.89 (0.3%) 5182.4 (-3.9%)
bw tcp (MB/s) 8269.34 8245.39 (0.3%) 8350.71 (-1%)

default) re-used within the pool, to ensure that any potential
uninitialized memory vulnerabilities would still be mitigated.

We also ran nginx using our detection tool (using two
variants); overhead (above our hardened version) was generally
similar to that reported by Koning et al. [30], with worst-case
overhead of <75%.

PHP: We also evaluated a modern high-performance
scripting language, PHP 7.0.9. We used the default compiler
flags (-O2), since we encountered build system problems when
attempting to use LTO. However, PHP makes extensive use of
an internal memory allocator, which re-uses memory obtained
from our hardened allocator; this reduces our safety guarantees
for smaller allocations.

We ran both supplied PHP micro-benchmarks (from the
Zend directory). The median of 21 runs (we saw little
variation between runs) is shown in Table II; the combination
of SafeInit and our new optimizer result in performance
improvements of around 3% for both micro-benchmarks. We
saw approximately 1% overhead (above the hardened version)
when running these benchmarks under our detection system
(using two variants).

C. Linux

We built the latest LLVMLinux [37] kernel tree1 using our
toolchain. We customized the build system to allow use of
LTO, re-enabled built-in clang functions, and modified the gold
linker to work around some LTO code generation issues we
encountered with symbol ordering.

Since the Linux kernel (inherently) performs its own mem-
ory management, it does not get linked with our hardened

1 based on mainline revision f800c25b

userspace allocator; our automatic hardening only protects
local variables. Protecting other sources of uninitialized data,
such as the SLAB and buddy allocators, would require manual
changes, and presumably add further overhead; such sanitiza-
tion is already offered by kernel patches such as grsecurity.

Table III provides a selection of latency and bandwidth
figures for typical system calls, using LMbench, a kernel
microbenchmarking tool [43]. We ran each benchmark 10
times, with a short warming-up period and a high number of
iterations (100) per run, and provide the median result. TCP
connections were to localhost, and other parameters were those
used by the default LMbench script. The overhead numbers
for the hardened kernels include the (negligible) overhead of
hardening LMbench itself.

We incur substantial overhead for the stat and open
system calls; while this is largely mitigated by the improved
performance provided by our optimizer, it is a cause for
concern, and we intend to investigate it further, along with
fstat and the (signal) protection fault, which is the only
system call we saw with overhead >5%.

To evaluate the real-world performance of SafeInit applied
to the kernel stack, we hardened both nginx and the kernel
with SafeInit, and compared performance to a non-hardened
nginx running under a non-hardened kernel. Using the sendfile
configuration we discussed above, and again using the loop-
back interface to provide an extreme situation, we observed
overhead of 2.9%, 3% and 4.5% for the 1M, 64kB and 4kB
cases respectively.

We present the numbers above as a view of what is possible
with only automatic mitigation, without application-specific
knowledge. Our optimizer could be extended with knowledge
of heap functions, inline assembly, and core kernel functions
such as copy_from_user, which would provide both im-
proved guarantees and more opportunities for optimization.

D. Residual Overhead

The average overhead of CINT2006 is distorted by the
performance overhead of two outliers. The most significant
is sjeng, a chess program. It stores game moves in large on-
stack arrays in several recursive functions, and these arrays
are then passed to many other functions, with the size stored
in a global variable. This code is so convoluted that, even
with manual inspection, we are unable to determine whether
or not array elements may be used without being initialized. An
appropriate approach might be to refactor or rewrite the code
in question, removing such ‘code smells’, which would benefit
both compiler analysis as well as our manual inspection.

This may be unrealistic in some cases, so we added
compiler support for annotating variables and types with a
’no zeroinit’ attribute, and annotated sjeng’s move_s type;
this single annotation successfully reduced sjeng’s runtime
overhead to 6.5% (which would, in turn, reduce the mean
overhead for CINT2006 to less than 2%), in combination with
our full set of optimizations.

lighttpd’s buffer preparation function, discussed earlier,
could also benefit from such an annotation. However, since
lighttpd does not clear the entire buffer, this would also
require detailed manual inspection to ensure it was safe; we
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TABLE IV. WARNING PASS OUTPUT, FOR CINT2006

Benchmark #Warnings Notes

bzip2 4 one is a 4MB buffer added by SPEC
gcc 1
gobmk 8 mostly too complex to analyze
h264ref 7
perlbench 1 unused at runtime
sjeng 19 17 of these are move_s
xalancbmk 16 temporary (wide) string buffers

TABLE V. VERIFIED UNINITIALIZED VALUE MITIGATIONS

CVE number Software Mitigated? Description

2016-4243 PHP X Use of uninitialized stack variables,
including a pointer.

2016-5337 qemu X Info disclosure to guest; missing null
terminator for stack string buffer.

2016-4486 Linux X Info disclosure to userspace; uninitial-
ized padding in struct on stack.

do not believe the reduced safety in adding such annotations
is justified, given the low overhead of our approach.

We also added a warning pass to our compiler, which can
omit warnings (at link time) about large on-stack allocations
(by default, >4kB) for which our optimizer failed to remove
initialization. Figure IV summarizes the results for CINT2006
(excluding the benchmarks which output no warnings). Many
of these are not on critical paths for performance, and some
are completely unused in practice, such as a 8kB buffer in
perlbench described in the source code as “The big, slow and
stupid way“. These warnings could be combined with profiling
to determine which code needs to be refactored or annotated.

E. Security

To verify that SafeInit works as expected, we not only
considered a variety of real-world vulnerabilities, such as those
in Table V, but also created a suite of individual test cases.
We inspected the bitcode and machine code generated for the
relevant code manually, and also ran our test suite using the
detection system we described above. We also used valgrind
to verify our hardening; for example, we confirmed that all
uninitialized value warnings from valgrind disappear when
OpenSSL 0.8.9a is hardened with SafeInit.

As with all compiler optimizations, our improvements may
expose latent bugs in other compiler code or in the source
being compiled, or even contain bugs themselves. We verified
that the benchmarks we ran produced correct results. We also
extensively tested our hardened kernel, and where available
ran test suites for the compilers and software we hardened
(such as PHP). However, the potential for such issues remains
an inherent risk when using any modern compiler, as shown
by Yang et al. [64]. Formal verification of compilers (e.g.,
CompCert [36]) or individual optimization passes (such as that
by Zhao et al. [67] and Deng et al. [16]).

However, in total, our SafeInit prototype adds or modifies
less than 2000 lines of code in LLVM, including some debug-
ging code and around 400 lines of code based on third-party
patches. Although our modifications are complex, this is a
relatively small amount of code and each component should be
individually reviewable; for comparison, our (separate) frame
clearing pass alone is more than 350 lines of code.

$ multivar php poc.php
Starting php-zero (20439)
Starting php-poison (20440)
20440 term sig: Segmentation fault (11)

Fig. 18. Detection output when checking PHP CVE-2016-4243

Our hardening does not prevent programs from reusing
memory internally. For example, a stack buffer may be reused
for different purposes within the same function, or a custom
internal heap allocator may reuse memory without clearing it,
such as we saw with PHP. Although it would potentially be
possible to catch some of these cases using heuristics, or by
attaching annotations of some kind, we do not believe it is
realistic nor reasonable for a compiler to support this.

Clearing variables to zero ensures that any uninitialized
pointers are null. An attempt to dereference such a pointer will
result in a fault; in such situations, our mitigation has reduced
a more serious problem to a denial-of-service vulnerability.

In many cases, code will specifically check for null pointers
or other variables, and so clearing variables mitigates issues
entirely; when running our detection system, we noticed that
many uninitialized pointer dereferences were only triggered
in the variant initialized with a non-zero value. For example,
Figure 18 shows the output of our detection system executing
a proof-of-concept exploit for PHP CVE-2016-4243. Only the
variant initialized with a non-zero value attempts to derefer-
ence the value (which results in a fault, caught by our system).

Initializing all variables with zero also has the potential to
activate vulnerabilities which would otherwise have remained
dormant. A contrived example could be a ‘insecure’ variable,
which is used to force a check of some kind, but is used
uninitialized. This may not be a problem in practice under
some environments, where the underlying memory happens to
always contain a non-zero value. However, this may change at
any time, and since compilers are allowed to transform such
undefined behavior, it is always possible that such code may
be optimized away.

As stated in our threat model, we only consider C/C++
code; assembly routines fall outside the scope of this work,
although typical inline assembly will declare local variables in
C/C++ code, which would then be initialized by our prototype.
Since we have implemented our SafeInit prototype as an
LLVM pass, other compiler frontends making use of LLVM
could also easily benefit from our work; we look forward to
experimenting with NVIDIA’s upcoming Fortran front-end.

IX. LIMITATIONS

Libraries: For complete protection against all uninitialized
value vulnerabilities, all used libraries must also be instru-
mented. The standard C library used on Linux, glibc, does
not build under clang, so our prototype implementation is
unable to instrument it; this is a limitation of our specific
implementation, not our design. Stepanov et al. [58] state that
they implemented interception of ‘close to 300’ libc functions
in MemorySanitizer; while such knowledge of library functions
is not required by SafeInit, having access to the bitcode for
libraries would also allow further performance improvements.
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Since both the toolchain and C library are usually provided
together, we feel it would be reasonable to make small im-
provements to the C library to mitigate any performance issues
for specific functions. However, in any case, we observed no
meaningful overhead (<0.1%) when building benchmarks and
applications against an unmodified alternative C library (musl).

Performance: Our modified optimizer can cause (small)
performance regressions in some code, caused by unintended
consequences on other optimizations and code generation. For
example, removing stores makes functions smaller, and so
more likely to fall under the inlining threshold; we can improve
performance across all of our benchmarks by modifying the
threshold. To be as fair as possible, we presented our results
without any such changes. The optimizations proposed in
our design and implemented in our prototype are deliberately
minimal, without additional analysis, to show they are practical
to implement in current compilers; this limits many of the
possible transformations. Despite this, we expect the overhead
of SafeInit to decrease significantly over time, as the related
compiler optimizations continue to improve.

There will inevitably be cases where performance is un-
acceptable in real-world code, as we saw with sjeng. Where
annotations are an unacceptable solution, making changes to
the code may be necessary. However, such refactoring can also
improve the code in other ways, whether just making it more
readable and easier to understand, or as we saw with lighttpd,
also by resolving potential memory or performance issues.

Relevant recent developments in LLVM include improve-
ments to loop analysis and optimization [47] as well as trans-
forming entire structure definitions to improve performance
[26]. During the development of our project, improvements to
LLVM’s store optimizations have also continued; for example,
one recent patch improved removal of stores which are over-
written by multiple later store instructions, allowing removal
of unnecessary initializations when individual members of a
structure are initialized. We look forward to seeing how future
optimizations further decrease the overhead of our work.

X. RELATED WORK

Detection: Dynamic analysis tools for detecting uses of
uninitialized data, such as valgrind’s memcheck [54], track
the initialized state of each bit of memory and (optionally)
the origin of any uninitialized data. The high overhead of this
tracking makes it often prohibitive for use during development,
and completely impractical to deploy. It is almost essential to
use optimized binaries, where undefined behavior may have
already introduced undetectable vulnerabilities, along with
other issues which reduce the reliability of this approach, such
as re-use of stack memory within functions.

More recent detection tools using a similar approach in-
clude Dr. Memory [7], which significantly reduces overhead
by applying optimizations, and MemorySanitizer [58] (MSan),
which reduces overhead even further by instrumenting binaries
during compilation (using LLVM). The execution time over-
head for MSan is reported as 2.5x (with optimized binaries),
which is sufficient to make it usable as part of continuous
integration for projects such as Chrome, and advancements
such as chained origin tracking mean that reported errors

require less manual effort to fix. Recent research [65] claims
to have reduced MSan overhead even further.

Berger et al. proposed using multi-variant execution to
detect uses of uninitialized heap allocations in DieHard [5].
By running multiple variants of the same program and filling
newly-allocated heap memory with random values, and pro-
viding all variants with identical input, any deviation in output
was likely to be due to use of uninitialized memory. To obtain
reliability against memory errors, they proposed running sev-
eral variants, and dropping any reporting inconsistent results.

Stack clearing: gcc’s Fortran compiler provides an
-finit-local-zero option, intended only for compatibil-
ity with legacy Fortran code. Several C/C++ compilers provide
options for automatic initialization of function stack frames,
intended only for debugging purposes. As discussed, such
stack frame clearing adds a significant performance penalty,
and provides fewer guarantees.

Chen et al. presented StackArmor [9], a binary hardening
system which isolated function frames containing potentially
unsafe buffers using guard pages and random reordering. This
makes it more difficult for attackers to predict which data
may be present in uninitialized portions of frames, providing
probabilistic mitigation of uninitialized data vulnerabilities;
they combined it with analysis to add zero-initialization to
potentially uninitialized portions of non-isolated frames, but
reported high average overhead of 28% on SPEC CPU2006.

Heap clearing: Heap allocation clearing is an option in
some existing allocators, such as jemalloc [20], although
generally intended only for debugging; for example, the je-
malloc documentation warns that it “will impact performance
negatively”. Wang et al. [62] proposed zero-initializing and
padding heap allocations at allocation time, by wrapping
malloc, to protect against buffer overread vulnerabilities.
Araujo and Hamlen [3] suggested just zeroing the first byte
of all allocations, giving limited benefits (e.g., for C strings)
but adding almost no overhead.

Chow et al. proposed Secure Deallocation [11], which
modifies the system C library to zero heap allocations when
freed, and modifies compiler code generation to clear stack
frames in function epilogues; this provides less comprehen-
sive protection and misses optimization opportunities. They
claimed runtime overhead of <7% for heap clearing, but 10%-
40% overhead for stack clearing, although their approach does
protect against some vulnerabilities outside our threat model.

Heap isolation: Isolating all heap allocations mitigates
some classes of memory vulnerabilities, such as overflows;
however, this is at best a probabilistic defense, since limited
available address space means memory is inevitably reused
after a certain point. DieHard [5] allocates memory randomly
across an oversized heap, and Archipelago [41] allocates
memory across the entire address space. OpenBSD [46] imple-
mented such a random allocator by default, including moving
metadata out-of-bound, and DieHarder [48] built upon this to
increase entropy at an additional performance cost of 20%,
due to the cost of memory fragmentation.

Information disclosure defenses: Many defenses have been
proposed for protecting sensitive data. TaintEraser [68] uses
tainting to track sensitive user input and prevent it from

13



escaping to the filesystem or network. Harrison and Xu [24]
proposed techniques for probabilistically protecting private
cryptographic keys against memory disclosure attacks, and
SWIPE [23] tracks sensitive data using static analysis and
erases it at the end of its lifetime.

Defenses which depend on information hiding to protect
pointers or other metadata are particularly vulnerable to infor-
mation disclosure. Advances such as fine-grained ASLR [25]
are rendered useless if uninitialized memory errors can be used
to disclose pointers. Defenses such as Code-Pointer Integrity
[32], Readactor [15] and ASLR-Guard [39] aim to protect code
pointers against more sophisticated disclosure attacks such as
those proposed by Evans et al. [19] and Schuster et al. [51].

Linux kernel

Uninitialized data vulnerabilities in the Linux kernel have
had increased attention in recent years; as well as obvious
issues of exposing confidential information, knowledge of
kernel addresses has become important for attackers wishing to
bypass defenses such as stack canaries (using gcc’s StackGuard
[14]) and ASLR (kASLR [13]). In 2011, Chen et al. [8] per-
formed an extensive analysis of kernel vulnerabilities and re-
ported that the most common category were uninitialized data
errors, almost all of which led to information disclosure. More
recently, Peiró et al. [50] provided more in-depth discussion
of such kernel info disclosure vulnerabilities, and presented a
technique for identifying stack information disclosures using
static analysis. Linux also includes kmemcheck, a dynamic
analysis tool for detecting uses of uninitialized heap memory.

grsecurity/PaX: The PaX project [49], as part of the
hardened grsecurity Linux patches, provides two different
mitigations for potentially uninitialized kernel stack data, using
gcc plugins. One annotates structures which may be disclosed
to userspace, and initializes any such structures on the stack
to prevent accidental information disclosure. The other takes
a more aggressive approach, clearing the kernel stack be-
fore/after system calls. A gcc plugin tracks the maximum stack
depth used for each call, providing efficient protection against
stack re-use between different system calls, although still
theoretically allowing an attacker to exploit such issues within
a single call. Both grsecurity and recent mainline kernels can
also be configured to initialize and/or clear heap allocations.

UniSan: Concurrently to our work, Lu et al. developed
UniSan[38], a compiler-based approach for mitigating infor-
mation disclosure vulnerabilities caused by uninitialized values
in the Linux kernel. They propose using static data-flow
analysis to trace potential execution paths (after optimizations
have been applied), and initializing any variables which cannot
be proven to be initialized before potentially being disclosed;
they implemented a prototype using LLVM, and manually
inspected their analysis results to find and disclose various new
uninitialized value disclosure vulnerabilities (some of which
we used to verify the correctness of our own work).

Our approach mitigates a wider range of potential uninitial-
ized value vulnerabilities on the stack (such as dereferencing
uninitialized pointers [40] or even control-flow-based side-
channel attacks [52]), and SafeInit obtains good performance
without additional data-flow analysis. However, UniSan’s inter-
procedural analysis and specific knowledge of kernel functions

may result in significantly better overhead in some cases,
particularly for the heap. We believe similar results could be
obtained by adding knowledge of Linux heap functions and a
Linux-specific optimization pass to SafeInit; combining both
techniques may also be a promising approach.

XI. CONCLUSION

Uninitialized data vulnerabilities continue to pose a secu-
rity problem in modern C/C++ software, and ensuring safety
against the use of uninitialized values is not as easy as it might
seem. Threats ranging from simple information disclosures to
serious issues such as arbitrary memory writes, static analysis
limitations, and compiler optimizations taking advantage of
undefined behavior, combine to make this a difficult problem.

We presented a toolchain-based hardening technique,
SafeInit, which mitigates uses of uninitialized values in C/C++
programs by ensuring that all local variables and stack alloca-
tions are initialized before use. By making use of appropriate
optimizations, we showed that runtime overhead for many
applications can be reduced to a level which makes it practical
to apply as a standard hardening protection, and that this can
be done practically in a modern compiler.

To foster further research in this area, we are open
sourcing our SafeInit prototype, which is available at
https://github.com/vusec/safeinit. We hope to
work towards making SafeInit available as a standard compiler
feature, and improving the optimizations it depends upon.
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[52] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in CCS, 2014.

[53] F. J. Serna, “The info leak era on software exploitation,” Black Hat
USA, 2012.

[54] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision,” in USENIX, 2005.

[55] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in CCS, 2004.

[56] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in S&P, 2013.

[57] B. Spengler, “Detection, prevention, and containment: A study of
grsecurity,” 2002, libres Software Meeting.

[58] E. Stepanov and K. Serebryany, “MemorySanitizer: fast detector of
uninitialized memory use in c++,” in CGO, 2015.

[59] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warning
defects,” in ICSE, 2016.

[60] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in S&P, 2013.

[61] R. van Eeden, “Unexpected code execution in smbd,” 2015.
[62] J. Wang, M. Zhao, Q. Zeng, D. Wu, and P. Liu, “Risk assessment of

buffer “heartbleed” over-read vulnerabilities,” in DSN, 2015.
[63] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F.

Kaashoek, “Undefined behavior: what happened to my code?” in APSys,
2012.

[64] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in PLDI, 2011.

[65] D. Ye, Y. Sui, and J. Xue, “Accelerating dynamic detection of uses of
undefined values with static value-flow analysis,” in CGO, 2014.

[66] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, “When
private keys are public: results from the 2008 Debian OpenSSL vulner-
ability,” in IMC, 2009.

[67] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formal
verification of SSA-based optimizations for LLVM,” in PLDI, 2013.

[68] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
Protecting sensitive data leaks using application-level taint tracking,”
ACM SIGOPS Operating Systems Review, 2011.

15


