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1
Introduction

Work-package 4 (WP4) is the core package for designing and implementing
security techniques in software. Primarily, WP4 aims at two important goals.
The first goal is to offer support for many hardware components that need
special modifications in the software layer. Many advanced security defenses
cannot be applied transparently to software by just modifying hardware.
For a quick and short example consider the micro-architectures discussed
in WP3, which offer hardware support for randomized instruction sets or
for control-flow graph labeling. All these features can be only leveraged by
applications that are designed for this purpose. In most cases a compiler can
enable support of the specialized hardware by just utilizing the additional
hardware instructions. Sometimes, the Operating System (OS) should be
modified, for example for refreshing the key used in randomized instruction
sets during a process context-switch. It is evident that these modifications,
which are either applied in the compiler or the OS, are not trivial to carry out
(changing a modern compiler is quite challenging these days). Therefore
we decided to dedicate a significant part of this deliverable in highlighting
possible support for hardware features in software.

The second goal of WP4 is to enable software-only solutions where en-
hanced hardware is not available. The majority of the techniques outlined
in this deliverable, and are discussed in Chapter 4, serve this goal. Again, for
a quick and short example, consider that there is no microprocessor avail-
able that supports control-flow graph labels. Control-flow Integrity (CFI)
techniques 1 can be still applied, by just re-writing a binary (or re-compiling
its source if available) for labeling the graph using software pseudo-labels
in the form of checks expressed using generic hardware instructions and
not special ones. Of course, the software-only version is inferior to the
hardware-supported one in terms of performance.

1We will elaborate more on how these techniques work in later reporting. Here we refer
to CFI just as an example.
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CHAPTER 1. INTRODUCTION

It is evident that these techniques are not trivial to implement no matter
if they work at the binary or source level. Nevertheless, it is important to
stress here, that supporting solutions in a software-only approach is equally
important with developing hardware-based techniques. This is mainly for
two reasons. First, sometimes changing hardware is simply not realistic
(for example in the case of the SHARCS Cloud application) and sometimes
changing the hardware may be a choice (for example in the SHARCS auto-
motive application). This strategy is in-line with what is explicitly stated in
the project’s DoW: key aspect of SHARCS is supporting multiple models of
operation.

   SHARCS H/W-Enabled

SHARCS Libraries

SHARCS OS

SHARCS-Extended CPU

Apps: Medical Implant, 
Smart Car

   SHARCS Commodity H/W

SHARCS Hypervisor

CPU (x86, ARM)

Apps: Smart Car,
App on Public Cloud

   SHARCS Software Only

SHARCS Libraries

CPU (x86, ARM)

Apps: App on Public Cloud,
Legacy Apps

SHARCS Libraries

SHARCS OS

SHARCS Hypervisor (OFF) SHARCS Hypervisor (OFF)

Clean-Slate Approach Hardware Emulation Software Monitoring

Less 
Security

High 
Security

SHARCS OS

Figure 1.1: Examples of different SHARCS framework operational models.

To stress again this multi-model aspect of the project we include all
SHARCS models as defined in the Description of Work (DoW) in Figure 1.1.
Notice, that as stated in the DoW , software changes apply to all different
models, either for providing support for hardware-based features or for en-
abling software-only techniques when custom hardware is not an option.
For completeness, we provide here the relevant part from the DoW:

Ideally, SHARCS pushes new functionality to the hardware level, and provides
all necessary software-stack changes for producing and running hardened ap-
plications. However, modifying all levels is not always possible, therefore we
provide two more relaxed SHARCS-supported models. First, one that incor-
porates zero hardware changes. For realizing this model all SHARCS fea-
tures are communicated to a commodity processor using a hypervisor. Sec-
ond, one that incorporates zero SHARCS features implemented at the CPU,
and there is no hypervisor available. For realizing this model, we link the
application with SHARCS libraries and add kernel modules at the OS, which
embed code for reliably and securely monitoring the application at run-time.

Finally, the deliverable is concentrated on providing security for three
specific applications (Implantable medical device, Automotive, Cloud com-
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puting). We stress here two important points. First, there is a significant
difference in terms of security requirements from application to applica-
tion. We have extensively discussed this in D2.1. Second, each application
can be potentially configured with multiple SHARCS models. For example,
the medical implant can be equipped with a sophisticated micro-processor,
which supports control-flow graph labeling, but this does not mean that
there are no software-only alternatives for similar implants that lack this
particular micro-processor.

This deliverable is the main result of task T4.1. The organization of the
deliverable is as follows. We first give a short overview of the system ar-
chitecture of the three different SHARCS applications in Chapter 2. These
descriptions are partially taken from D2.1. For the full system descriptions
the reviewer should refer to D2.1. In the current deliverable we include
only the parts needed for making D4.1 self-contained and eliminating cross-
deliverable referencing. Subsequently, in Chapter 3 the security require-
ments of each application to be supported in software, and hence to be
addressed in this work-package, are identified. Finally, the document de-
scribes in Chapter 4 our current progress and future plans for our activities
in T4.2, T4.3 and T4.4. This final part describes in short techniques we
are developing as part of our research for hardening software. These tech-
niques are going to be applied to the three SHARCS applications and are
core contributions of WP4. The exact mechanics of the techniques and their
actual integration with the three SHARCS applications is the content of fu-
ture reporting. Finally, in Appendix A we provide a table for summarizing
the software techniques used for addressing the specific requirements of the
three SHARCS applications as discussed in Chapter 3.
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2
System Architectures

This chapter is based on the applications’ descriptions as discussed in D2.1
and it is included for completeness, easier reading, and eliminating cross-
deliverable referencing. The material of this chapter is related to the system
architectures of the three SHARCS applications. The reviewer that has gone
through D2.1 can safely skip this chapter and use it only as a reference for
the rest of the text.

2.1 System Architecture for an Implantable Medical
Device

The first SHARCS application is a medical implant. In particular, Neurasmus
provides a device for detecting seizures. A short description of the implant
follows, while for the full overview please refer to D2.1.

The SHARCS Implantable Medical Device (IMD) Application is a novel,
closed-loop, fully implantable neuromodulator that senses EEG and single-
neuron recordings, detects seizures before they manifest, and prevents them
through highly selective optogenetic (or electric) stimulation of cerebellar
neurons. Although implant functionality is autonomous, the implant must
also communicate with the outside world for overall control of the device
(e.g. recalibration) as well as for sending patient-monitoring information to
the patient, the doctor and so on.

The implant is smart, adaptive and autonomous, but it must also allow
for operation under the remote control of an external handheld reader de-
vice, e.g. a smartphone. The handheld can perform various operations such
as implant control, (re)calibration and data logging.

The neuromodulator is implemented in the Neurasmus System on Chip
(SoC), depicted in Figure 2.1. Within SHARCS , we set the application
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CHAPTER 2. SYSTEM ARCHITECTURES

Figure 2.1: The Neurasmus-SoC which implements the implant application.

boundary to contain all digital components plus wireless communication
to/from the SoC.

From a software perspective the IMD is really minimal. A single-process
application runs which controls the functionality of the device. Although,
this is not a full-fledged Operating System (OS), we refer to it with the term
OS several times in this deliverable, since it is the software part that operates
the device. The minimal software OS can be compiled using a toolchain that
supports LLVM bitcode, therefore source-based techniques can be integrated
as LLVM phases that modify the bitcode.

2.1.1 Scope

Embedded systems and medical devices have been studied in terms of se-
curity. The challenging part in this domain is that vulnerabilities can have
severe consequences. In the context of SHARCS the medical implant appli-
cation is interesting, since it gives clearly the opportunity to apply defenses
in all available levels. Therefore, security techniques are expected to be
applied in this application by modifying both the hardware and software
of the device. For software, in particular, certain techniques for leveraging
hardware features are in order, like for example compiling software with
support for new hardware instructions. In addition, software-only harden-
ing techniques can be applied for cases where support in hardware is not an
option.

2.2 System Architecture for Automotive applications

The second SHARCS application is an automotive application. In particular,
Elektrobit provides software that runs on modern cars and takes care of
several functions that can be carried out inside a vehicular environment.
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2.2. SYSTEM ARCHITECTURE FOR AUTOMOTIVE APPLICATIONS

A short description of the system and the software that runs on it follows,
while for the full overview please refer to D2.1.

Modern premium cars have up to 80 Electronic Control Units (ECUs).
Figure 2.2 shows a selection of different ECUs mounted in a car. Some
ECUs, like the engine control and braking system, are essential in driving
the car. Other systems such as the airbag are responsible for the safety of
the driver. Window lift and Seat control are examples of ECUs controlling
comfort functions, which are not necessarily needed to drive the car. The
ECUs are interconnected by an on-board network. Furthermore a smart car
may communicate with the outside world (e.g. Car-to-Car, Cloud service).
Within SHARCS we would like to secure the complete system using a holistic
approach.

Figure 2.2: Automotive ECU examples.

2.2.1 General description of a typical ECU

An Electronic Control Unit (ECU) is an embedded system with a specific
functionality in a car (e.g. engine control, brake). Figure 2.3 shows an ab-
stract overview of an ECU. Depending on the ECU functionality there are
different sensors(input) and actuators(output) connected. For example a
Heating, Ventilation and Air Conditioning (HVAC) system needs a tempera-
ture sensor as an input. Depending on the measured and target temperature
the system can control a heater. The ECUs are interconnected by different
automotive buses. It is therefore important to secure all ECUs regardless
of their function. Otherwise it could be possible for a compromised ECU to
gain access to others.
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Figure 2.3: Typical ECU.

Figure 2.4: AUTOSAR software stack.

In an ECU usually a software application based on the AUTOSAR1 (AU-
Tomotive Open System ARchitecture) standard is executed on a specific au-
tomotive microcontroller (see Figure 2.4). AUTOSAR is a worldwide devel-
opment partnership of vehicle manufacturers, suppliers and other compa-
nies from the electronics, semiconductor and software industry. The layered
architecture ensures the decoupling of the functionality from the supporting
hardware and software services. Elektrobit supplies a complete software so-
lution, based on AUTOSAR, and provides a software stack in source code,
while everything can be adapted/modified in the frame of the SHARCS
project. See Figure 2.5 for an overview of Eletkrobit’s stack. More precisely
EB provides:

1http://www.autosar.org/
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2.2. SYSTEM ARCHITECTURE FOR AUTOMOTIVE APPLICATIONS

Figure 2.5: AUTOSAR software stack from Elektrobit.

• The AUTOSAR Basic Software (BSW) and Run Time Environment (RTE).
This includes for example the operating system, bus communication
and memory management.

• An AUTOSAR application consisting of software components (SW-C).
In the frame of the SHARCS project this would be a simple demo appli-
cation to show the effectiveness of the newly added security measures.

2.2.2 General description of a typical car network

All ECUs are interconnected to an on-board network by different automotive
buses like CAN, Flexray or Ethernet. The on-board network architecture is
different between every car manufacturer and even car model. A network
instance is shown in Figure 2.6. All ECUs are usually combined into groups
like for example Body Electronics (e.g. Window Lift, Lighting), Infotain-
ment (e.g. Head Unit, Instrument Cluster), Chassis and Safety (e.g. Electric
Power Steering, Airbag) and Powertrain(e.g. Engine control, transmission).
Communication between the different groups is possible over a gateway. It
is therefore important to secure all ECUs as well as the communication be-
tween them regardless of their function. Otherwise it could be possible for
a compromised ECU to gain access to others.
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Figure 2.6: Automotive on-board network example

2.2.3 General description of a connected car

Modern cars are more and more connected to the outside world (Figure 2.7).
They can communicate with other cars (Car-to-Car), with all kinds of infras-
tructure (Car-to-Infrastructure), with Cloud Services (e.g. real-time naviga-
tion or backup of settings) and with user appliances, such as smart-phones,
which can control it remotely. Because of the wireless connectivity a pos-
sible vulnerability can be remotely exploited in a large number of vehicles.
This must be prevented by security mechanisms against all hazards.

2.2.4 Scope

Embedded security is not entirely new to the automotive domain. Elektrobit
provides security mechanisms for more than 15 years to car manufacturers.
For several typical automotive use cases partially standardised and many
individual solutions exist and are used in vehicles already. The following
security use cases are covered today:

• Authentication

• Signature

• Flash protection

• SW-Enabling (OEM-specific or according to HIS)

• Anti-theft mechanisms in SW
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2.3. SYSTEM ARCHITECTURE FOR CLOUD COMPUTING

Figure 2.7: Connected car example

• Mileage protection

• Secure Onboard Communication

• Data protection

• Secure Hardware Extension (SHE)

• Hardware Security Module (HSM)

• Secure Boot

• Microkernel OS with memory and execution protection

All of the above usually rely on the use of cryptography for providing
security. For the SHARCS project one shall assume that the existing mech-
anisms are (in general) suitable and working as intended. In the context of
the SHARCS project we are mostly interested in securing the system against
exploitation. More precisely, in WP4, we focus on hardening applications
either by utilizing hardware support or with software-only techniques.

2.3 System Architecture for Cloud Computing

The final SHARCS application is a cloud platform. OnApp builds and pro-
vides cloud software based on multiple layers of services. This framework,
namely the OnApp Cloud Platform, serves as the cloud application. A short
description of the platform follows, while for the full overview please refer
to D2.1.
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The end-to-end view of the deployment of OnApp Cloud from the repos-
itory to the customer Cloud is shown in Figure 2.8. The Cloud platform is
used for virtualising hardware resources and presenting those resources to a
set of end-users in the form of VM. This helps data center owners to achieve
higher utilization of the resources and decouples the management of the
virtual machines, which is handled by a company that specializes in cloud
hosting. For end-users that just want web-hosting or other types of work-
load to run as a service, they don’t have to be concerned with maintenance,
which is taken care of by data center owners.

End-users’ Virtual Machines (VMs) can run any type of workload that
they would like as if it were a machine that they had full access to. They
can choose to use an Operating System (OS) that is in the OnApp template
repository or if they would prefer they can prepare a template from scratch.
Normally a VM is specialised to perform a single role and will be config-
ured with software applications that allow it to function in that role. The
workloads on a VM are normally considered to be the applications that are
needed to perform the role with the rest of the system and the other tasks
being considered as overhead. From the perspective of a hypervisor server
on which these VMs are running the resources are shared as a black box,
the workloads and overhead are considered together, when deciding how
the resources should be shared between VMs.

The goal of securing this application is to distribute and run in a trusted
manner, applications running in a VM on potentially un-trusted (cloud) sys-
tems that have limited ability to modify the hardware. To further specify this
goal, the owner of VM1 should be assured that a workload that they are run-
ning in VM1 cannot have its data compromised or its performance affected
beyond contracted Quality of Service (QoS) levels. These exploits could be
indirectly caused by a secondary VM, VM2 that may be misconfigured or
compromised. In a Cloud environment we must consider that some legacy
applications will not have the source code available whereas for some other
applications the source code may be available. This applies for the host
hypervisor platform, the guest operating system and the workloads.

Figure 2.8: End-to-end view of the OnApp platform from the repository
through to deployment.
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2.3. SYSTEM ARCHITECTURE FOR CLOUD COMPUTING

Figure 2.9: OnApp simplified Cloud deployment.

The boundary of the system is considered to be the cloud deployment
on the customer site. A minimal cloud deployment includes (as shown in
Figure 2.9);

• CP2 server that is the public facing server that manages the cloud
deployment;

• a backup server is optional but highly recommended;

• one or more servers (two or more to have migration and other useful
functions) that act as hypervisors for hosting virtual machines.

Normally a SAN appliance is required for a cloud deployment to host
the storage for the virtual machines. OnApp have a product, Integrated
Storage2, which means that for OnApp Cloud deployments an external SAN
is not required. It is therefore assumed for this application that the storage
is hosted on the hypervisors themselves and that Integrated Storage is used.

2.3.1 Scope

The cloud environment is significantly rich, a broad variety of security issues
can be considered, and defenses can be applied to several layers. Here we
clarify the scope of SHARCS for the cloud application.

Many of the attacks and vulnerabilities for cloud-based computing sys-
tems come from attacks to the cryptographic elements in the platform, at-
tacking weaknesses in the keys, fundamental security flaws, and flaws in
the implementation of cryptographic mechanisms. Many projects cover the
security of cryptographic components and as such they will not be directly

2http://www.onapp.com/storage

www.sharcs-project.eu 23 December 25, 2015

http://www.onapp.com/storage


CHAPTER 2. SYSTEM ARCHITECTURES

addressed by SHARCS with a minor exception. In SHARCS we protect sen-
sitive data like cryptographic keys in GPUs. Notice, that the nature of the
protection is on the systems level, and not on the cryptographic level. Ad-
ditionally, in the context of SHARCS we are interested mostly in software
hardening for preventing exploitation. Hardening software can be done by
either applying techniques to binaries or to source code. As it has been
already mentioned, the cloud environment includes many legacy applica-
tions, which cannot be re-compiled. Finally, any changes to the underlying
hardware will undermine many of the principles and operations of the cloud
platform. Given that data centers should normally have strict access controls
to the hardware we will work on the basis that hardware cannot be modified
and physical attacks are out of scope. Therefore, all SHARCS techniques for
the cloud application should be considered software-only.
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3
Application requirements that need software support

In this part we discuss how all security requirements of the three SHARCS
applications are addressed in software. The methodology and the product
for identifying the security requirements are part of D2.1. This Chapter
primarily aims at fulfilling two goals. The first goal is to discuss how support
of hardware components that are discussed in WP3 reaches the software
layer, through particular APIs, toolchains and OS support. The second goal
is to discuss software-only techniques, in cases where hardware support is
not available.

We begin with a generic overview of the benefits stemming from sup-
porting security in software;

• Utilization of particular hardware features that are not designed in
principle for offering security;

• Selectively leverage hardware features for applying security techniques
in particular applications;

• Application of security defenses that are based on hardware features
to architectures that do not support the related features;

• Deployment of recent security technologies to legacy systems;

• Flexibility in applying techniques in different layers (OS, hypervisor,
compiler, application, etc.);

• Faster deployment, since changing software is easier that changing
hardware;

• Easier patching of faulty security implementations via software.

There are also disadvantages of using software-based defenses:

• Increased overheads when hardware support is absent;
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SUPPORT

• Complexity due to interference of multiple components;

• Lack of transparency;

In the following part of this chapter we review the requirements of each
application, which, in the context of SHARCS , receive support in software
by other complementing hardware features or by offering software-only re-
placements.

3.1 Software Requirements for Implantable Medical
Devices

The application evaluation in SHARCS deliverable D2.1 has identified a
number of security requirements that apply, which we repeat here for con-
venience:

SR-1.1 Security compliance with extra-functional constraints.
Briefly stated, these extra-functional constraints are:

(a) Real-time execution of the IMD functionality (10 ms);

(b) Increase power and energy consumption by no more than 10%;

(c) Increase device-area by no more than 30%.

SR-1.2 Security compliance with proper treatment delivery;

SR-1.3 Patient-data security and privacy;

SR-1.4 Patient safety & device accessibility;

SR-1.5 Security compliance with maintenance tasks.

The medical implant is an example application that follows the clean-
slate SHARCS model, since all hardware can be modified, and offering se-
curity at the hardware level is typically more efficient (performance, en-
ergy) than software-based solutions. Additionally, all hardware technolo-
gies must be exposed to the software running in the device. For example the
software of the device should be annotated for running on a microproces-
sor that supports machine instructions for CFI or accelerated cryptographic
operations. Therefore, in this part we highlight the software components
that promote hardware features to the application. Additionally, we provide
purely software-based techniques that do not rely on particular hardware
components. Therefore, multiple SHARCS models apply to this application,
which can be configured accordingly.
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3.2. SOFTWARE REQUIREMENTS FOR AUTOMOTIVE APPLICATIONS

SFR-1.1 Cryptographic operations (SR-1.1) Annotate software for support-
ing the lightweight cryptographic operations of the SISC core in the
Neurasmus SoC. Software running in the device can take advantage
of the fast cryptographic operations implemented in hardware.

SFR-1.2 Prevent code injection and code reuse (SR-1.2 through SR-1.5): Li-
brary and compiler toolchain for supporting hardware-based ISR and
CFI. The hardware architectures described in WP3 for executing pro-
grams using a randomized instruction set (ISR) and for adhering to
their control-flow graph (CFI) need special OS and compiler support.
Programs should be compiled for leveraging the new architectures,
and, in the general case, the OS should be modified accordingly. For
the medical implant the OS is contained in a single-process application
running on the bare metal, therefore producing a CFI/ISR-enabled bi-
nary is sufficient. In WP4 we provide all the necessary software stack
for enabling the hardware architectures to the software layer. Addi-
tionally, we provide software-only hardening techniques that support
secure program execution. Applications are compiled with a custom
toolchain that inserts checks in all indirect branches. For more details
about how these techniques work please refer to Chapter 4.

SFR-1.3 Prevent data leakage (SR-1.3): Library for supporting the secure
and encrypted IMD communication stack. The library is provided in
two versions. One version is based on the cryptographic library that
supports the accelerated instructions available in hardware, and the
other one is based on the equivalent software-based library, which
supports standard cryptographic operations.

SFR-1.4 Enable emergency authentication (SR-1.4): Implement support for
the emergency authentication mode in the software of the IMD appli-
cation.

3.2 Software Requirements for Automotive applica-
tions

The application evaluation in SHARCS deliverable D2.1 has identified a
number of security requirements that apply, which we repeat here for con-
venience:

SR-2.1 Message manipulation: An attacker shall not be able to impersonate
another sender of messages which are received by the controller on
a communication bus in such a way that the controller executes code
which the attacker provides.
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SR-2.2 Data flash manipulation: If there is a data flash module on the con-
troller which can be manipulated by an attacker, the attacker shall not
be able to manipulate the data flash in such a way that the controller
executes code which the attacker provides.

SR-2.3 Single controller execution: If the attacker is able to manipulate a
single controller in such a way that the controller executes code which
the attacker provides, the method used for this controller shall not be
possible on a different controller running the same software stack.

SR-2.4 Software module isolation: If an attacker is able to modify the source
code of one of the basic software modules or the application modules,
the attacker shall not be able to obtain information about data in the
other basic software modules and application modules.

The Automotive Application is very security-critical and the on-board
and off-board vehicle communication must be enhanced with security mech-
anisms to prevent attackers from manipulating functionality or gaining unau-
thorized access to those ECUs. Such protection is essential for the safety and
security of passengers on the road.

All hardware technologies must be exposed to the software running in
the device. Therefore, in this part we highlight the software components
that promote hardware features to the automotive application. Addition-
ally, even though hardware-based security mechanisms have the highest
standard it is not always feasible to adapt the hardware (e.g. off the shelf
automotive microcontroller). In this case software security mechanisms are
appropriate.

3.2.1 Software security requirements

SFR-2.1 Code injection (SR-2.2 through SR-2.3) Library and compiler toolchain
for supporting hardware-based ISR. We thoroughly describe the archi-
tecture of a microprocessor that supports Instruction Set Randomiza-
tion (ISR) in WP3. This microprocessor prevents any code injection of
running applications, as long as the randomization key is kept secret
and safe. For executing ISR-enabled programs the OS should be mod-
ified accordingly (e.g., the loader should be able to run randomized
binaries, and the kernel should be modified to save the key during
context-switch). In WP4 we will provide all the necessary software
stack for enabling the ISR-enabled applications. Additionally, we pro-
vide software-only hardening techniques that allow for secure pro-
gram execution. For this particular case, we apply a technique that
randomizes the stack and prevents exploitation of stack-based vulner-
abilities. For more details about how these techniques work please
refer to Chapter 4.
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SFR-2.2 Code reuse (SR-2.2 through SR-2.3) Library and compiler toolchain
for supporting Control-flow Integrity (CFI) on embedded systems. We
thoroughly describe the architecture of a microprocessor that sup-
ports CFI in WP3. This microprocessor prevents exploits based on
code reuse, since the running code should adhere to the control-flow
graph. For executing programs that are CFI-enabled, the code should
be annotated with the new CFI instructions, while the OS should be
modified accordingly (e.g., handle violations of the CFI policy). In
WP4 we will provide all the necessary software stack for enabling
the CFI-enabled applications. Additionally, we provide software-only
hardening techniques that provide secure program execution. For this
particular case, we apply coarse-grained CFI to legacy binaries, and
fine-grained CFI to applications of the automotive stack that can be
recompiled. For more details about how these techniques work please
refer to Chapter 4.

SFR-2.3 Encryption of shared memory data (SR-2.4) Toolchain for support-
ing hardware encryption of shared memory data. Additionally, we will
provide software-based only cryptographic libraries.

3.2.2 Software application requirements

• Interoperability: Operating system and compiler tool chain should
allow modifications.

• Compatibility: Binaries format should be open (e.g., ELF).

• Performance: The software security mechanisms should only have
minimal impact on the execution time.

• Power: Power consumption overhead should be as little as possible
but is not as critical as in the implant application.

3.3 Cloud application

The application evaluation in SHARCS deliverable D2.1 has identified a
number of security requirements that apply, which we repeat here for con-
venience:

SR-3.1 End-user security and privacy

SR-3.2 Integrity of the platform and workloads

SR-3.3 Availability of the platform

SR-3.4 All operations must be attributable to a user
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SR-3.5 All operations must be authenticated

In D2.1 the security threats related to the Cloud application domain have
been enumerated and in D2.2 further investigation into the attack vectors
and specific vulnerabilities was performed. Some of the risks can be miti-
gated through a combination of software and hardware techniques. In WP3
we thoroughly discuss defenses implemented in hardware, while here we
elaborate more on the software side. Notice, that the power utilization and
energy efficiency for security solutions in the data center is not as critical as
it is for the Automotive or IMD applications. Therefore, most techniques for
the Cloud application can be software-only. Additionally, hardware-based
defenses can be provided to applications running in the Cloud through soft-
ware emulation.

3.3.1 Security requirements - software

SFR-3.1 Software API for all hardware requirements discussed in D3.1 (SR-
3.1 through SR-3.5): In D3.1 we thoroughly discuss a number of
hardware components for addressing all security requirements of the
cloud application, as defined in D2.1. Additional hardware compo-
nents and features require software support for enabling techniques
in applications. This is usually enabled through a software Applica-
tion Programming Interface (API).

SFR-3.2 Software hardening (SR-3.1 through SR-3.3): Advanced code-reuse
attacks may affect the integrity and the availability of the cloud plat-
form and lead to application compromising. Software hardening tech-
niques will be applied for strengthening the cloud environment against
software exploitation. The techniques can be applied directly to bina-
ries, for legacy applications, or by re-compiling software. The goal of
the techniques is to prevent exploits from happening, even when vul-
nerabilities are in place. Consider, that the cloud environment is rich,
and providing solutions for vulnerability-free software is not realistic
in this case. Therefore, all defenses focus on preventing exploitation,
rather than correcting bugs.

SFR-3.3 Advanced Authentication (SR-3.4 through SR-3.5): Authentication
will be hardened in both client and server side. For the server side,
software that leverages GPU storage for shielding sensitive crypto-
graphic keys will be used. This software protects the server’s certificate
from compromising.
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3.3.2 Software application, beneficial features

Additionally to software support for particular hardware components, the
Cloud application utilizes many sophisticated software-only techniques. These
technologies can be applied to both closed-source legacy applications by
directly modifying binaries or to open-source applications by re-compiling
them. All technologies delivered by WP4 for the Cloud application are based
on the following techniques.

• Binary re-writing engines: Certain frameworks exist for de-composing,
analyzing, and hardening binaries, as for example DynInst [6].

• Compiler extensions: In cases where source is available, software
hardening techniques can be incorporated in the compiler (e.g., by
adding an LLVM phase).

• Dynamic Binary Instrumentation (DBI): In cases where source is
not available and the binary cannot be statically analyzed dynamic
instrumentation will be used using Intel’s PIN framework [12].

3.3.3 Application software requirements

• Operations. The operating system should be based on the Linux ker-
nel.

• Operations. The compiler(s) used should be based on LLVM/Clang or
GCC.

• Compatibility. The operating system should support standard virtual-
ization features.

• Compatibility. The operating system should support dynamic linking.

• Business. Software hardening techniques should be open.

• Business. Additional hardware components for authentication (e.g.,
GPUs) should be based on commodity models.

• Business. All virtualization support would be delivered through Xen
or KVM.

3.3.4 Software assumptions

• No malicious software installed before applying the techniques; a safe
bootstrap phase of the operating system is assumed.

• Operating system is trusted and, if not compromised, does not mali-
ciously interfere with the rest of the applications.
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• Hardware is trusted.
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4
Current progress and future plans on software security

mechanisms

In this part we discuss the progress of research related to the techniques
outlined in this deliverable. As already stated this deliverable has mainly
two goals. The first goal is to discuss how support of hardware compo-
nents reaches the software layer, through particular APIs, toolchains and
OS support, and, the second goal is to discuss software-only techniques,
in cases where hardware support is not available. In this part we discuss
some representative software-only techniques for hardening software. The
requirements that serve the first goal are listed in Table 4.1 and the require-
ments that serve the second goal are listed in Table 4.2. Notice that SFR-1.2
is included in both lists, since for this particular case we enable multiple
SHARCS models.

In this section we discuss the progress we have so far in developing
techniques that target the requirements listed in Table 4.2. Some of the
techniques that work with binaries can be applied to legacy components
of all applications, while some others offer protection only when source is
available and the protected software can be recompiled. The techniques that
work on binaries are PathArmor and StackArmor, which are presented in
Sections 4.2 and 4.3 and target requirements SFR-2.2 and SFR-3.2. When

H/W Support
SFR-1.1 Cryptographic operations
SFR-1.2 Prevent code injection and code reuse
SFR-1.3 Prevent data leakage
SFR-1.4 Enable emergency authentication
SFR-3.1 Software API

Table 4.1: List of requirements where changes of the SHARCS software
stack are needed.
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Software-only
SFR-1.2 Prevent code injection and code reuse
SFR-2.1 Code injection
SFR-2.2 Code reuse
SFR-3.2 Software hardening
SFR-3.3 Advanced Authentication

Table 4.2: List of requirements where SHARCS software provides security
defenses without H/W support.

source code is available then ShrinkWrap, which is presented in Section 4.1
can be applied (SFR-1.2, SFR-2.1, SFR-2.2, and SFR-3.2).

In Section 4.4 we present a software application that, partially, runs on a
GPU and is able to shield sensitive data, like cryptographic keys, in the mem-
ory of the graphics card. This approach has several advantages as we discuss
later in the section. Notice, that the GPU involved can be commodity with-
out incorporating particular custom features. This application is addressing
SFR-3.3. Finally, in Section 4.5 we report on a custom software developed
by IBM for vulnerability finding, which will assist in covering SFR-3.2.

We summarize all techniques and requirements in Appendix A.

4.1 Source-based VTable protection

ShrinkWrap is a compiler extension for hardening C++ source code. Pri-
marily ShrinkWrap targets C++ VTables, which is essentially a hard to pro-
tect form of function pointers, but the system can also provide protection of
other elements that lead to indirect branches (such as return addresses and
C function pointers). In this section we elaborate on the C++ protection,
since it is the most interesting and challenging. Nevertheless, the technique
should not be considered that targets C++ source code only; generic C
source code is supported, as well.

C++ is a popular, fast, object-oriented (OO) language used to develop
some of the most popular Web browsers, including Chrome and Mozilla.
Due to their popularity, size and complexity, applications developed in C++
are frequently targeted by attackers. Despite advances in software secu-
rity, like the introduction of data-execution prevention [4], stack-smashing
protection [8], and address-space layout randomization [16], their exploita-
tion is still possible. New techniques involving information leaks [21] and
return-oriented programming [20] are employed to bypass protection mech-
anisms and perform arbitrary code execution attacks.

One of the features of C++ applications targeted by attackers are virtual
function tables, or VTables. OO languages support run-time method bind-
ing, i.e., determining the method to be called based on the run-time type
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of an object, instead of the static type of the pointer pointing to that ob-
ject. Modern compilers typically provide this functionality through VTables,
which provide an efficient way to call the correct method at run time. Un-
fortunately, VTables are based on indirect calls, which is what makes them
a prominent targets for hijacking the control flow of a program.

To prevent such control-hijacking attacks, the research community has
turned to control-flow integrity (CFI). First conceived in 2005 [3], CFI has
seen a long line of followers and variants since [24, 25, 14]. CFI strives to
constrain the control flow of a program to its statically-determined control-
flow graph (CFG) as strictly as possible. In principle, CFI can be very ef-
fective in preventing a wide-range of attacks. In recent times however, we
bear witness to a cat-and-mouse game, where each new CFI technique is im-
mediately attacked and bypassed. Earlier works have shown that attackers
can bypass loose CFI mechanisms [10], so follow-up works tried to exploit
source code information [14] and VTables semantics [13, 7, 5] to make CFI
more fine-grained. A very recent work has shown that the above approaches
still leave programs vulnerable and argue that unless you correctly extract
C++ semantics from source code they will remain vulnerable in the future
[19].

We have investigated in detail current protection systems [23]. Our in-
vestigation exposes three weaknesses of existing schemes. First, we have
found that existing solutions fail to precisely identify the object types asso-
ciated with a virtual call-site, even in the presence of source code. Second,
we have found that even state-of-the-art solutions, like VTV [23] which is
developed by Google, handle multiple inheritance over-permissively. Nor-
mally, every class has its own VTable and base classes contain all the VTa-
bles of their subclasses. When a class C inherits from multiple classes, VTV
extends the VTables of its base classes to include, and thus share, all en-
tries in their individual VTables. I.e., “sibling” classes share VTable entries.
This is another example where control-flow integrity is loosely enforced. Fi-
nally, we have identified a fundamental error in the assumptions made by
other solutions. Previous approaches operate on the premise that allowable
control-flow transfers at call-sites (i.e., where a method of an object is in-
voked) can be determined solely based on the type of the object pointer
involved. We show that this assumption is false and more information must
be extracted from the call-site to reach optimal protection.

Based on these observations, in VU, we have designed a new VTable-
protection scheme that uses information available during compilation to ex-
tract the most restrictive set of VTables that should be accessible at a virtual
call-site within the code. Our progress at this point, can be summarized as
follows:
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• We have identified limitations in the design and implementation of
current VTable protection schemes, including the primary industrial
implementation by Google, VTV [23].

• We have identified key design decisions that should be accounted for,
when dealing with VTable protection. This also includes a definition of
optimal (minimal) VTables sets that should be accessible at each point
in the program.

• We have developed a practical testing methodology to evaluate VTable
protection schemes and to highlight potential limitations.

• We have implemented a prototype of the proposed protection scheme
and have evaluated it on a large, complex real-world application, the
Chrome, browser, in terms of security and speed.

4.2 Advanced CFI for binaries

A key problem with traditional CFI solutions—even recent source-level fine-
grained ones [23]—is that they enforce only context-insensitive CFI policies,
which examine control edges in isolation and attempt to statically derive the
resulting superset of all the possible targets according to the CFG. The lack
of context inevitably results in weak CFI invariants, allowing attackers to
freely chain edges together and form paths that are even trivially infeasible
in the original CFG (e.g., returning to a function never on the active call
stack [10]).

Context-sensitive CFI techniques are a promising way to address this
problem, since they rely on context-sensitive static analysis to associate CFI
invariants to paths—i.e., multiple consecutive edges—in the CFG and en-
force such invariants on execution paths at runtime. The stronger secu-
rity guarantees provided by context-sensitive CFI techniques have been ac-
knowledged as early as in the original CFI proposal, but their real-world
adoption has been rapidly dismissed as impractical [3].

In our research, we have demonstrated that Context-sensitive CFI (CCFI)
can indeed be implemented in an efficient, reliable, and practical way for
real-world applications. We have developed PathArmor1, a binary-level CCFI
solution which enforces context-sensitive CFI policies on both the backward
and forward edges. PathArmor relies on commodity hardware support to
efficiently and reliably monitor execution paths to sensitive functions which

1PathArmor is open source, available via https://github.com/dennisaa/
patharmor

www.sharcs-project.eu 36 December 25, 2015

https://github.com/dennisaa/patharmor
https://github.com/dennisaa/patharmor


4.3. STACK PROTECTION FOR BINARIES

can be used to mount control-flow diversion attacks [15], and uses a care-
fully optimized binary instrumentation design to enforce CCFI invariants on
the monitored paths. PathArmor’s path invariants are derived by a scalable
context-sensitive static analysis performed over the CFG on-demand, which
uses caching of path verification steps to achieve high efficiency. Verification
itself is also very efficient, since all the CFI checks are batched at sensitive
program points.

To show the practicality of our design, we have prototyped two context-
sensitive and binary-level CFI policies (for the backward and forward edges,
respectively) on top of PathArmor. Moreover, our framework can also serve
as a general foundation for even stronger CCFI implementations, for in-
stance using context-sensitive data-flow analysis at the source level. Even
in the current setup, PathArmor provides a comprehensive CCFI protection
system with much stronger security guarantees than traditional CFI solu-
tions, while matching or even improving their performance. Moreover, due
to its optimized design, PathArmor can also serve as an efficient basis for
fine-grained context-insensitive CFI (CCFI) policies.

In short, our progress can be summarized as:

• We have identified the key challenges towards practical CCFI imple-
mentations and investigate opportunities to address these challenges
in real-world applications and commodity platforms.

• We have developed PathArmor, a framework to efficiently support ar-
bitrary context-sensitive and context-insensitive CFI policies on com-
modity platforms. To fulfill its goals, PathArmor relies on hardware
support, binary instrumentation, and on-demand static analysis to
batch even sophisticated CFI checks at the relevant sensitive points
in a binary.

• We have evaluated PathArmor using popular server applications and
the SPEC CPU2006 benchmarks. Our results show that PathArmor can
significantly restrict the number of legal control flows compared to
traditional CFI solutions (−70% across all our applications, geometric
mean), while yielding bounded memory usage (+18-74 MB on our
applications) and low run-time performance overhead (3% on SPEC
and 8.4% on our applications, geometric mean).

4.3 Stack protection for binaries

Information leakage and buffer overflow attacks, in particular, are greatly
helped by the predictability of the stack layout. Although the start is typi-
cally randomized, the stack itself grows in an entirely predictable fashion,
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making the disclosure of canaries, return addresses, or data pointers of pre-
vious stack frames as simple as leaking uninitialized data or exploiting buffer
overreads. The same applies to exploits modifying data in another stack
frame. For example, randomization between stack can stop many high-
profile attacks.

Our focus on binaries is neither academic nor fundamental, but impor-
tant in practice: the adoption of advanced security measures in popular
compilers is slow. Compiler maintainers are conservative and wont to reject
options that incur significant overhead. The -fstack-protector-strong

option in gcc is a case in point: it had to be tailored to a very narrow threat
model for performance reasons. gcc, any measure not added to it for per-
formance reasons will not make it into their products. Unless they apply the
defenses at the binary level, users cannot decide for themselves to sacrifice
some performance for better security. Additionally, many SHARCS applica-
tions contain, at least in part, legacy software that cannot be recompiled.

In SHARCS we apply a novel stack-protection technique that shields bi-
naries from exploits based on stack vulnerabilities. To provide comprehen-
sive protection, we rely on static analysis enabled by state-of-the-art binary
analysis tools—which provide the necessary program abstractions, such as
functions and their control-flow graphs. Our static analysis is also supported
by information on the location and size of stack objects, for example pro-
vided by debug symbols.

Using binary rewriting to instrument call and return instructions, we
provide tailored protection based on application-specific performance and
security requirements. We rely on a combination of randomization, isola-
tion, and secure allocation techniques to create the illusion that all the stack
frames and the individual stack buffers are drawn from a fully randomized
space with no spatial or temporal predictability guarantees. Unlike all the
existing solutions, this strategy can comprehensively protect against arbi-
trary stack-based attacks.

In short, our progress can be summarized as:

• We have developed StackArmor a novel stack-protection technique
which combines inter- and intra-frame defenses to stop arbitrary spa-
tial and temporal attacks.

• We have implemented the technique in x86 64 Linux, therefore can be
easily applied to the Cloud environment, when software re-compilations
is not possible.

• Through a detailed experimental evaluation of our prototype, we have
concluded that it achieves a modest performance and physical mem-
ory overhead of 5% and +3 MB, respectively, on average, on single-
threaded server programs, while scaling well even to heavily threaded
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server programs (28% and +112 MB with 100 worker threads, on
average) with full protection.

4.4 Safe storage using GPUs

Servers have always been an attractive target for attackers, especially when
they host popular web sites and online services, as they typically contain a
wealth of private user data and other sensitive information. Encryption can
be used as an additional layer of protection for sensitive data, once a service
has been compromised, but it is only effective as long as the keys involved in
cryptographic operations are kept secret. In fact, keys themselves are often
the target, as for example is the case with the infamous Heartbleed bug [1].
The exploitation of Heartbleed, a buffer over-read vulnerability in OpenSSL,
allows attackers to read arbitrary contents from a server’s memory, including
TLS private keys. Besides attacks that leverage software vulnerabilities to
disclose memory or take complete control of the host, key recovery attacks
can also be mounted using direct memory access through Firewire [17] or
PCI [22]. Moving one step further, it has been demonstrated that keys can
be extracted by freezing memory chips and inspecting their contents [11].

Once the secret keys are leaked, attackers can impersonate the server
(without triggering any browser warnings), or decrypt any past and future
captured encrypted data (unless perfect forward secrecy is used). Defenses
that involve the in-memory obfuscation of keys using dispersal techniques
offer only partial protection, as attackers can eventually break the obfus-
cation scheme with adequate effort. To that end, it is crucial that, apart
from the trusted operation of the underlying cryptographic implementation,
secret keys and other sensitive information is safely stored and protected
from leakage. It is important to ensure that a potential security flaw in a
service will not allow an adversary to get access to secret keys, even if the
service is fully compromised, as this can lead to further catastrophic conse-
quences [2, 1].

We explore an alternative approach to the problem of protecting a server’s
cryptographic keys, which takes advantage of the graphics card to exclu-
sively i) store cryptographic keys and other sensitive information, and ii)
carry out all cryptographic operations, without involving the CPU. Our pro-
totype system, named PixelVault, provides native GPU implementations of
the AES [9] and RSA [18] algorithms, and prevents key leakage even when
the base system is fully compromised. This is possible by exposing private
keys only in GPU registers, and keeping PixelVault critical code exclusively
in the GPU instruction cache, preventing this way even privileged host code
from accessing any sensitive code or data.

We have implemented a PixelVault-enabled version of the OpenSSL li-
brary, which allows the transparent protection of existing services without
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hardware modifications or operating system recompilation. Multiple ser-
vices can use the same GPU to perform cryptographic operations, using the
same or different certificates (and secret keys), while trust is always given
to a single hardware entity—the GPU.

Our choice of the GPU for key storage is justified by its unique prop-
erties, including (i) non-preemptiveness: all program code running on the
GPU is never context-switched, and therefore, there is no saved state in
the host’s memory that could include information associated with crypto-
graphic keys; (ii) on-chip memory operation only: the running GPU code is
tamper-resistant in on-chip memory, and the associated cryptographic keys
are never stored in observable memory, but only in non-addressable mem-
ory, such as the registers of the GPU; (iii) transparency: the GPU is inde-
pendent from the host, so no hardware, operating system, or application
changes are required—just a modification of the standard cryptographic li-
braries used, such as OpenSSL, which essentially implies that legacy appli-
cations can fully take advantage of our system with minimal effort; (iv) com-
modity component: GPUs are commodity components and are cheaper than
dedicated cryptographic hardware; (v) performance: GPUs achieve high
computational performance for cryptographic operations, for applications
in which they can be parallelized.

In short, our progress can be summarized as:

1. We have designed a system for keeping cryptographic keys and carry-
ing out cryptographic operations exclusively on the GPU, which allows
it to protect secret keys from leakage even in case the host is fully com-
promised.

2. We have implemented the system using commodity GPUs (NVIDIA’s
GTX 480), and provide a compatible version of the OpenSSL library.

3. Our system does not only provide better protection, but also out-
performs CPU-based solutions in terms of processing throughput for
server applications.

4.5 Source-code screening

SHARCS will use offline source code screening tool, capable of finding secu-
rity vulnerabilities in the code, as well as proving to some extent that some
of the code components are clean of specific types of vulnerabilities (e.g.
memory safety issues). The benefit SHARCS platform gains from the tool is
as follows: components that were successfully screened will be considered
”clean”, leading to better utilization of SHARCS hardware and software on-
line technologies for only ”dirty” components, improving the overall perfor-
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mance, memory utilization and other resource consumption metrics of the
whole system. The tool will be provided under the Task 4.3.

www.sharcs-project.eu 41 December 25, 2015



CHAPTER 4. CURRENT PROGRESS AND FUTURE PLANS ON SOFTWARE
SECURITY MECHANISMS

www.sharcs-project.eu 42 December 25, 2015



A
Mapping of Software Techniques to Software

Requirements

43



APPENDIX A. MAPPING OF SOFTWARE TECHNIQUES TO SOFTWARE
REQUIREMENTS

So
ft

w
ar

e
R

eq
u

ir
em

en
t

H
/W

su
pp

or
t

So
ur

ce
C

FI
B

in
C

FI
St

ac
k

R
nd

G
PU

s
Sc

re
en

in
g

SF
R

-1
.1

C
ry

pt
og

ra
ph

ic
op

er
at

io
ns

SF
R

-1
.2

Pr
ev

en
t

co
de

in
je

ct
io

n
an

d
co

de
re

us
e

SF
R

-1
.3

Pr
ev

en
t

da
ta

le
ak

ag
e

SF
R

-1
.4

En
ab

le
em

er
ge

nc
y

au
th

en
ti

ca
ti

on
SF

R
-2

.1
C

od
e

in
je

ct
io

n
SF

R
-2

.2
C

od
e

re
us

e
SF

R
-3

.1
So

ft
w

ar
e

A
PI

SF
R

-3
.2

So
ft

w
ar

e
ha

rd
en

in
g

SF
R

-3
.3

A
dv

an
ce

d
A

ut
he

nt
ic

at
io

n

Ta
bl

e
A

.1
:

So
ft

w
ar

e
re

qu
ir

em
en

ts
an

d
te

ch
ni

qu
es

.

www.sharcs-project.eu 44 December 25, 2015



Bibliography

[1] The Heartbleed Bug. http://heartbleed.com/.

[2] Who holds the encryption keys? http://www.computerworld.com/s/article/
9225414/Who_Holds_the_Keys_.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Proc. of the
12th ACM CCS, 2005.

[4] S. Andersen and V. Abella. Changes to Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies, Data Execution Prevention, 2004.
http://technet.microsoft.com/en-us/library/bb457155.aspx.

[5] Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict Protection for Virtual
Function Calls in COTS C++ Binaries. In Proc. of the 22nd NDSS, 2015.

[6] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In PASTE,
2011.

[7] Chao Zhang, Chengyu Songz, Kevin Zhijie Chen, Zhaofeng Cheny, and Dawn Song.
VTint: Protecting Virtual Function Tables’ Integrity. In Proc. of the 22nd NDSS, 2015.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-
gle, Q. Zhang, et al. StackGuard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. of Usenix Security’98.

[9] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998.
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