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1
Introduction

Work-package 4 (WP4) is the core package dedicated to the design and
implementation of the SHARCS software technologies. In particular, WP4
pursues two important goals. The first goal is to offer support for hardware
technologies devised by WP3 that need special modifications in the software
layer. The second and more important goal of WP4 is to devise software-
based solutions where hardware security techniques are not applicable or
available. The first goal concentrates on software support facilities which
have been briefly described elsewhere (D4.1) and tailored to hardware tech-
niques detailed in D3.2. For this reason, we focus D4.2 on the second goal,
which serves as a basis for the SHARCS core software technologies.

In detail, this deliverable reports on our efforts in T4.2, T4.3, and T4.4 to
support security by design at the software layer. Our security philosophy dic-
tates a holistic approach to systems security across several dimensions. First,
it requires WP4 to devise comprehensive security technologies that cover all
the core requirements identified by the analysis performed in D2.1. This is
crucial to support end-to-end security. Second, it requires WP4 to devise ver-
satile security technologies that cover all the application domains and con-
straints required by WP5. Third, it requires WP4 to devise generic security
technologies that can shield all the layers of the software stack (hypervisor,
operating system, applications, etc.) from attacks. Finally, it requires WP4
to devise multilevel security technologies that can provide defenses in depth
at different stages of the software lifecycle.

We start by consolidating the application requirements in Chapter 2. The
goal is to map our requirements into attack primitives that make part of our
threat model, and implementation constraints, in the different application
domains considered in WP5. Identifying the implementation constraints is
important to ensure our design can effectively comply with the restrictions,
but also benefit from the opportunities offered by the different application
domains in WP5. Identifying the attack primitives is important to ensure
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CHAPTER 1. INTRODUCTION

that our design can counter all the attacks and threats considered in our
requirements analysis.

Before presenting a design overview of our software technologies, Chap-
ter 3 further analyzes the security vulnerabilities that allow adversaries to
craft such attack primitives. We note that our analysis also provides de-
sign guidelines for the technologies developed by WP3. We report on the
attack primitives and vulnerabilities in D4.2 rather than D3.2, given that
our threat model focuses on software rather than hardware vulnerabilities.
We conclude by introducing our design and detailing several representative
software technologies at different design layers in Chapter 4. We also show
that our design covers all the dimensions of our security philosophy.
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2
Background

This chapter summarizes the key properties of the applications in WP5 and
maps our requirements analysis into concrete design guidelines (rather than
technical software requirements, as detailed in D4.1) for our software tech-
nologies. We first outline the general classes of attack primitives and im-
plementation constraints that are relevant for our requirements. Next, we
briefly recap the properties of each of the applications in WP5 and map their
requirements to the attack primitives and implementation constraints previ-
ously outlined. The following analysis is essential to cover two dimensions
of our security philosophy: comprehensiveness and versatility. The other di-
mensions are covered by our system design in the following chapters.

2.1 Attack primitives

According to our threat model defined in D2.1, SHARCS technologies need
to generally secure systems across all the dimensions dictated by the “CIA”
model: confidentiality, integrity, availability1. To breach confidentiality, an
attacker needs to craft primitives to leak security-sensitive data from mem-
ory, thus operating unauthorized memory reads. To breach integrity, an at-
tacker needs to craft primitives to tamper with security-sensitive data in
memory, thus operating unauthorized memory writes. As detailed in Chap-
ter 3, such primitives are easy to craft in practice due to widespread memory
error vulnerabilities in systems software. These two primitives alone can be
combined to craft more complex primitives and mount end-to-end attacks.

For example, tampering with data that affects the control flow of a target
application (i.e., control data) allows an attacker to craft an unauthorized ex-
ecution primitive. This primitive can be used to divert normal control flow
and grant an attacker arbitrary code execution capabilities. These can, for

1The other dimensions of the generalized “CIANA” model in D2.1 are addressed by WP3
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Figure 2.1: Sample attack primitive implementations and their application
to mount different attack types (Source: Szekeres et al. [85])

example, be used to stop execution (breaching availability) but, more impor-
tantly, to leak or tamper with security-sensitive data in memory (breaching
confidentiality or integrity, respectively). In other words, an unauthorized
execution primitive poses the highest security threat.

We note that these three fundamental primitives can be composed in
different ways, by an attacker, to mount arbitrarily sophisticated attacks.
Figure 2.1 illustrates a number of examples. As shown in the figure, there
are several options to implement the attack primitives considered, on top
of existing memory error vulnerabilities (see Chapter 3), and use them in
different attack types. For example, other than relying on a control-flow
diversion attack, an attacker can opt, when possible, for a code corruption
attack to execute arbitrary code. In a code corruption attack, an attacker
uses an unauthorized memory write primitive to corrupt executable code
memory and inject their own malicious code. In an information leak attack,
an attacker uses an unauthorized memory read primitive to leak control
data (e.g., a return address on the stack) or non-control data (e.g., a user ID
on the heap) from the application. In a data-only attack, finally, an attacker
uses an unauthorized memory write primitive to corrupt non-control data
and gain increased privileges (e.g., the administrator user ID).
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2.2. IMPLEMENTATION CONSTRAINTS

2.2 Implementation constraints
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Figure 2.2: The SHARCS models and implementation constraints

Figure 2.2 recaps the canonical SHARCS models, which cover all the
application domains in WP5 and immediately suggest their implementation
constraints. The clean-slate approach model allows unrestricted hardware
modifications and is the focus of WP3. The hardware emulation and the
software monitoring models are of core interest for WP4.

The hardware emulation model assumes a SHARCS-hardened software
stack running on top of commodity hardware. While this model prevents
any underlying hardware modifications, it allows software technologies to
leverage commodity hardware features to improve security and also emu-
late custom hardware features developed by WP3 (e.g., by using hardware
virtualization). In addition, depending on the particular setting, our tech-
nologies can be used to protect source or binary programs (i.e., legacy ex-
ecutable binaries whose source code is not available). In other words, this
model yields two classes of software technologies: (i) commodity hardware-
supported, source-level; (ii) commodity hardware-supported, binary-level.

The software monitoring model assumes a SHARCS-hardened software
stack running on arbitrary hardware platforms. As a result, this model con-
strains our software technologies to make no assumptions on the underlying
hardware or software platform. This prevents our technologies from oper-
ating hardware modifications, leveraging commodity hardware features, or
introducing any hypervisor-based techniques. It only allows for security fea-
tures to be implemented entirely in software, at the source or binary level. In
other words, we can implement two other classes of software technologies
in this model: (i) software-only, source-level; (ii) software-only, binary-level.
The emphasis on binary-level techniques is particularly prominent, given
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that it becomes more common for software technologies to be deployed on
legacy applications where there is no source code available.

2.3 Mapping applications

In this section, we briefly recap the properties of the applications in WP5
and evidence the relevant attack primitives and implementation constraints
for each application.

2.3.1 Implantable medical device

Figure 2.3: The Neurasmus-SoC which implements the implant application

The implantable medical device application (Figure 2.3) is an instance
of the clean-slate approach SHARCS model, allowing for security technolo-
gies to be implemented in hardware, in software at the source level, and in
software at the binary level, with no restrictions.

We now briefly revisit the application requirements from D2.1 to un-
derstand the impact of the attack primitives introduced earlier on the im-
plantable medical device application. SR-1.1 and SR-1.4 only deal with
accessibility and extra-functional requirements for defenses and are not rel-
evant for the discussion here. SR-1.2 dictates immutability of treatment
delivery, which can be compromised by an attacker armed with unautho-
rized execution or memory write primitives (e.g., by changing treatment
parameters). SR-1.4 dictates confidentiality of patient data, which can be
compromised by an attacker armed with unauthorized execution or memory
read primitives (e.g., by leaking patient data over the network). SR-1.5 dic-
tates that certain (maintenance) operations should only be granted to priv-
ileged users, which can be compromised by an attacker with unauthorized
execution or memory write primitives (e.g., by evading privilege checks).
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2.3. MAPPING APPLICATIONS

In short, countering all the attack primitives, the unauthorized execution
primitive above all, is necessary to satisfy our security requirements.

2.3.2 Automotive

Figure 2.4: The AUTOSAR software stack

The automotive application (Figure 2.4) can be considered an instance
of the clean-slate approach or of the hardware emulation SHARCS model
depending on the particular setting. This generally allows for security tech-
nologies to be implemented in hardware, or in software (source-level and
binary-level) supported by commodity hardware features.

We now briefly revisit the application requirements from D2.1 to un-
derstand the impact of the attack primitives introduced earlier on the au-
tomotive application. SR-2.1, SR-2.2, and SR-2.3 dictate no arbitrary code
execution via message, data flash, or controller manipulation, which can be
compromised by an attacker armed with unauthorized execution primitives
(e.g., by executing code to control critical ECUs). SR-2.4 dictates no cross-
controller information leak, which can be compromised by an attacker with
unauthorized execution or memory read primitives (e.g., by reading private
user data from another controller). In short, countering unauthorized exe-
cution primitives above all, and the other primitives as a by-product or to
prevent information leaks, is necessary to satisfy our security requirements.

2.3.3 Cloud

The cloud application (Figure 2.5) can be considered an instance of the
hardware emulation or of the software monitoring SHARCS model depending
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Figure 2.5: End-to-end view of the OnApp platform from the repository
through to deployment

on the particular setting. This allows for security technologies to be imple-
mented entirely in software or in software leveraging features of commodity
hardware. Both source-level and binary-level solutions are possible, but the
emphasis on binary-level technologies is important given their deployability
and backward compatibility benefits in a cloud (virtualization) setting.

We now briefly revisit the application requirements from D2.1 to under-
stand the impact of the attack primitives introduced earlier on the cloud ap-
plication. SR-3.1 dictates confidentiality of VM data, which can be compro-
mised by an attacker armed with unauthorized execution or memory read
primitives (e.g., by reading the cryptographic keys of a VM user). SR-3.2 dic-
tates integrity of VM data, which can be compromised by an attacker armed
with unauthorized execution or memory write primitives (e.g., by tamper-
ing with the workload of a VM user). SR-3.3 dictates availability of the
platform, which can be compromised by an attacker armed with any unau-
thorized primitive causing disruption of service (e.g., by operating an invalid
memory access and bringing the system to a halt). SR-3.3 and SR-3.4 allow
only authenticated operations attributable to a specific user, which can be
compromised by an attacker armed with unauthorized execution primitives
(e.g., performing an administrative operation as a regular user). In short,
countering all the attack primitives, and, again, the unauthorized execution
primitive above all, is necessary to satisfy our security requirements.
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3
Overview

This chapter provides a high-level overview of the SHARCS software tech-
nologies, based on the analysis detailed in Chapter 2. For this purpose, we
first provide a comprehensive analysis of all the relevant memory error vul-
nerabilities enabling an attacker to craft the attack primitives detailed in the
previous chapter. Next, we illustrate how our high-level design can provide
several layers of generic and in-depth software defenses, to counter such
vulnerabilities and the corresponding attacks. The following analysis is es-
sential to cover the two remaining dimensions of our security philosophy:
generic and multilevel applicability. We conclude with a brief discussion on
the residual attack surface.

3.1 Memory error vulnerabilities

Memory error vulnerabilities constantly rank as the first security threat for
systems software written in low-level languages such as C and C++. Such
languages give programmers full control over memory and make no effort
to enforce type and memory safety. As a result, programming mistakes can
easily lead to bugs that induce the program to use memory in unintended
ways. Such memory error bugs are often the cause of security vulnerabilities
in the common case where an attacker can successfully trigger and exploit
the underlying bugs. This allows an attacker to craft memory read, write,
and execute primitives and gain increased privileges.

Figure 3.1 depicts the evolution of memory error vulnerabilities and ex-
ploits over time. This plot has been generated using an open-source analy-
sis tool [6] with vulnerability data from the CVE data feed [3] and exploit
data from the Exploit Database [5]. As shown in the figure, memory error
vulnerabilities are a very prominent class of vulnerabilities and, in recent
years, compete in number and exploit coverage with web vulnerabilities—
the other major class of security vulnerabilities. Their evident real-world
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CHAPTER 3. OVERVIEW

Figure 3.1: Evolution of memory error and web vulnerabilities/exploits

impact, along with their prevalence in systems software, justifies our focus
on memory error vulnerabilities in this project.

In the following sections, we will briefly introduce all the major classes of
memory errors, only excluding those that have limited security implications
or are already countered by practical and widespread security hardening
techniques (e.g., format string errors).

3.1.1 Buffer overrun and underrun

1 char *lccopy(const char *str) {
2 char buf[BUFSIZE];
3 char *p;
4

5 strcpy(buf, str);
6 for (p = buf; *p; p++) {
7 if (isupper(*p))
8 *p = tolower(*p);
9 }

10 return strdup(buf);
11 }

Listing 3.1: A sample function containing a buffer overrun vulnerability
(Source: https://www.owasp.org).

A buffer overrun (or underrun) occurs when a program reads or writes
memory outside the intended buffer (or array) boundaries. Such unin-
tended out-of-bounds accesses are typically termed buffer overflows (or un-
derflows) when the program writes data after the end (or before the begin-
ning) of the buffer and buffer overreads (or underreads) when the program
reads data after the end (or before the beginning) of the buffer. In both
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3.1. MEMORY ERROR VULNERABILITIES

cases, this spatial memory error leads to undefined behavior, as the outcome
depends on the data stored in adjacent memory locations. This vulnerability
can be exploited by an attacker to read/write (or indirectly execute) from/to
unintended locations in memory.

Listing 3.1 shows an example of a typical buffer overrun vulnerability.
The function lccopy in the example receives a string input and returns a
lower-case copy of the string in output. The C function expects the input
string to be always smaller than BUFSIZE. However, if an attacker can lure
the program into using a larger, attacker-controlled string, the strcpy invo-
cation at line 5 will overrun the buf buffer’s boundary and corrupt adjacent
data. This may, for example, allow an attacker to overwrite the return ad-
dress on the stack and execute arbitrary code upon function return.

3.1.2 NULL pointer dereference

1 void png copy(png structp png ptr, int length, const void
2 *user data) { png charp chunkdata;
3 chunkdata = (png charp)png malloc(png ptr, length + 1);
4 /* ... */
5 memcpy(chunkdata, user data, length);
6 /* ... */
7 }

Listing 3.2: A sample function containing a NULL pointer dereference vul-
nerability (Source: https://www.securecoding.cert.org).

A NULL pointer dereference occurs when a program uses a NULL pointer
to read/write from/to memory. When the NULL pointer is used to access
memory directly, such unintended access can be normally detected by the
hardware (e.g., by ensuring the zero page is always unmmaped in a virtual
memory address space organization). More problematic are cases when
a pointer is derived from a NULL pointer through pointer arithmetic and
later used to access memory. In this case, the program may use the de-
rived pointer to read/write from/to higher addresses in memory, leading to
undefined behavior. This vulnerability can be exploited by an attacker to
read/write (or indirectly execute) from/to unintended locations in memory.

Listing 3.2 shows an example of a typical NULL pointer dereference vul-
nerability. The function png copy in the example is derived from a real-
world code snippet in a vulnerable version of the libpng library. The C func-
tion dynamically allocates a buffer of size length+1 pointed by chunkdata
and copies user data into it. However, if an attacker can lure the program
into using a length with the value -1, the chunkdata pointer will be set
to NULL and the memcpy invocation at line 5 will trigger a NULL pointer
dereference. This may, for example, allow an attacker to overwrite security-
sensitive data structures stored in the low part of the memory address space.
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CHAPTER 3. OVERVIEW

3.1.3 Integer overflow

1 cairo status t cairo pen init (...) {
2 /* ... */
3 pen->num vertices = cairo pen vertices needed(
4 gstate->tolerance, radius, &gstate->ctm
5 );
6 pen->vertices = malloc(
7 pen->num vertices * sizeof(cairo pen vertex t) );
8 /* ... */
9 }

Listing 3.3: A sample function containing an integer overflow vulnerability
(Source: https://www.securecoding.cert.org).

An integer overflow occurs when the program performs arithmetic oper-
ations that exceed the maximum size of the integer type used to store the
result. For example, LONG MAX+1 causes an integer overflow for a long data
type. Integer overflows are sometimes benign arithmetic errors explicitly
handled by C/C++ programs. When integer overflows are accidental, how-
ever, they can lead to undefined behavior and often to memory errors. For
example, if an integer affected by overflow is used as an index to a buffer,
the corresponding memory access may result in a buffer overrun (or un-
derrun) and allow an attacker to read/write (or indirectly execute) from/to
unintended locations in memory.

Listing 3.3 shows an example of a typical integer overflow vulnerability.
The function cairo pen init in the example is derived from a real-world
integer overflow vulnerability in the Mozilla Scalable Vector Graphics (SVG)
viewer. The C function allocates a pen->vertices buffer whose size is based
on the multiplication of a signed integer and an unsigned integer. If the
resulting value is too large to be stored in a size t data type, this will
cause an unsigned integer wrap at line 7 and result in allocating memory of
insufficient size. This may cause later accesses to the buffer to read/write
memory past the intended boundary, allowing an attacker to exploit the
resulting buffer overrun and access adjacent data in memory.

3.1.4 Use-after-free

A use-after-free occurs when the program uses a pointer to a deallocated
object (i.e., a dangling pointer) to read/write from/to memory. This tempo-
ral memory error leads to undefined behavior, as the outcome depends on
the data stored in the underlying memory location after deallocation. For
example, if the underlying memory is reused to store a new object, a write-
after-free operation can corrupt the data in the new object. This vulnera-
bility can be exploited by an attacker to read/write (or indirectly execute)
from/to unintended locations in memory.

www.sharcs-project.eu 20 December 27, 2016

https://www.securecoding.cert.org


3.1. MEMORY ERROR VULNERABILITIES

1 void run op(void) {
2 char* ptr = (char*)malloc (SIZE);
3 /* ... */
4 if (err) {
5 abrt = 1;
6 free(ptr);
7 }
8 /* ... */
9 if (abrt) {

10 logError("operation aborted before commit", ptr);
11 }
12 }

Listing 3.4: A sample function containing a use-after-free vulnerability
(Source: https://www.owasp.org).

Listing 3.4 shows an example of a typical use-after-free vulnerability. The
C function run op in the example first allocates a buffer of size SIZE pointed
by the pointer ptr. In case of error, the buffer is deallocated and the cor-
responding pointer becomes dangling. The logError invocation at line 10
will then trigger a use-after-free and read from previously deallocated mem-
ory. This may, for example, allow an attacker to leak security-sensitive data
from a newly allocated object reusing the underlying memory location.

3.1.5 Uninitialized read

1 void report error(const char *msg) {
2 const char *error log;
3 char buffer[BUFFERSIZE];
4

5 sprintf(buffer, "Error: %s", error log);
6 printf("%s\n", buffer);
7 }

Listing 3.5: A sample function containing an uninitialized read vulnerability
(Source: https://www.securecoding.cert.org).

An uninitialized read occurs when the program reads uninitialized data
from a newly allocated object. This temporal memory error leads to unde-
fined behavior, as the outcome depends on the data stored in the underlying
memory before the allocation. This vulnerability can be exploited by an at-
tacker to read (or indirectly execute) from unintended locations in memory.

Listing 3.5 shows an example of a typical uninitialized read vulnerabil-
ity. The C function report error in the example formats and writes an
error string to standard output. However, the function fails to initialize the
error log local variable, causing the sprintf invocation at line 5 to trigger
an uninitialized read. This may, for example, allow an attacker controlling
the value of the uninitialized pointer on the stack to leak security-sensitive
data or trigger other vulnerabilities. For example, if the attacker lures the
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program into pointing error log to a string with more than BUFFERSIZE
characters, the sprintf invocation will result in a buffer overflow.

3.1.6 Type confusion

1 class IShouldRunCalculator { public: virtual bool UWannaRun() = 0; };
2

3 class CalculatorDecider final : public IShouldRunCalculator {
4 public:
5 CalculatorDecider() : m run(false) {}
6 virtual bool UWannaRun() { return m run; }
7 private: bool m run;
8 };
9

10 class DelegatingCalculatorDecider final : public IShouldRunCalculator {
11 public:
12 DelegatingCalculatorDecider(IShouldRunCalculator* d) : m delegate(d) {}
13 virtual bool UWannaRun() { return m delegate->UWannaRun(); }
14 private: IShouldRunCalculator* m delegate;
15 };
16

17 int calculate() {
18 CalculatorDecider nonono;
19 DelegatingCalculatorDecider isaidno(&nonono);
20 IShouldRunCalculator* decider = &isaidno;
21 CalculatorDecider* confused =
22 reinterpret cast<CalculatorDecider*>(decider);
23 if (confused->UWannaRun())
24 execl("/bin/gnome-calculator", 0); }

Listing 3.6: A sample function containing a type-confusion vulnerability
(Source: https://googleprojectzero.blogspot.nl).

A type confusion bug occurs when the program is “confused” about the
type of a given object and mistakenly uses a pointer of type T1 to read/write
from/to an object of type T2. This type-unsafe access leads to undefined
behavior, as the outcome depends on the in-memory structure of type T1 vs.
type T2 and the data of type T2 stored in the underlying memory location.
This memory error is particularly common in C++ programs, which often
use fast (but error-prone) C-style casts to address different objects within a
complex class hierarchy. The net effect is similar to a use-after-free, where
the underlying memory is reused by a newly allocated object of a different
type. This vulnerability can be exploited by an attacker to read/write (or
indirectly execute) from/to unintended locations in memory.

Listing 3.6 shows an example of a typical type confusion vulnerability.
The C++ function calculate first casts a pointer into an object of type
IShouldRunCalculator to a pointer of type CalculatorDecider*. Later
(line 23), it dereferences the casted pointer to invoke the UWannaRun method
and decide whether to run the calculator. In the example, the check will
take place using code and data from an object of an incompatible type. This
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may, for example, allow an attacker, controlling the target object, to execute
arbitrary code upon the invocation of the UWannaRun method.

3.2 Design overview

Having reviewed the major classes of memory error vulnerabilities and ex-
emplified the corresponding exploits part of our threat model, we now
present a design overview of the SHARCS software technologies developed
by WP4. Our framework follows a multilevel approach to counter memory
error vulnerabilities and the corresponding attacks, deploying a portfolio of
security-enhancing techniques at different stages of the software life-cycle.
At each stage, we develop generic and versatile techniques, that can be used
at different layers in the software stack (OS, application, etc.) and in the
different application domains with their own implementation constraints
(binary-only, hardware-supported, etc.). This includes a variety of software
techniques depending on the particular layer considered, including program
analysis tools, compilers, binary translators, run-time systems, etc. The de-
sign is intentionally modular and generic, so that we can easily integrate the
different techniques in an optimal way in the different application domains.

Figure 3.2 outlines our approach. We represent a piece of software as
a blackbox, originally containing an unspecified number of memory error
bugs. Our goal is to eliminate such bugs or prevent them from being the
source of successfully exploitable vulnerabilities after deployment in pro-
duction. For this purpose, T4.2 and T4.4 develop technologies that incre-
mentally reduce the attack surface at each stage of the software life-cycle
(with the exception of software verification, developed by T4.3). This is to
minimize the exploitation power left to an attacker. The following subsec-
tions present a detailed overview of our technologies at each design layer.

3.2.1 Software verification

Our first step ( 1©) towards securing software against memory error vulner-
abilities is to verify software components for correctness. For this purpose,
we develop software verification techniques that can provably assert that a
target software component is free of bugs, reducing the attack surface. If the
verification fails, our solution provides detailed reporting on the vulnerabil-
ities found (T4.3). For verification to work, we need a formal specification
or a model of the software being developed. While this strategy is effective
at proving software for correctness, it has trouble scaling to complex soft-
ware components. For this reason, we limit the scope of our verification
techniques to simple software modules.
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Figure 3.2: Design overview of the SHARCS software technologies and their
application at different stages of the software lifecycle. The green areas
mark the parts of the software secured by our technologies. The blue marks
highlight the impact of our hardening techniques

3.2.2 Software testing

Complex software components, that are not suitable candidates for verifica-
tion techniques, can still contain exploitable bugs. Our second step ( 2©) is to
attempt to eliminate such bugs, by developing software testing techniques,
and further reduce the attack surface. Such techniques run the target soft-
ware through a variety of carefully crafted inputs in an attempt to maximize
execution coverage and find bugs. Once bugs are found, they can be fixed
during development before they make their way to production. While high-
coverage testing is effective at eliminating some bugs, it cannot generally
eliminate all the bugs. Residual bugs, that are only triggered under special
conditions, escape testing and still plague running software in production.

3.2.3 Memory error defenses

Once residual bugs make their way to production, they may allow an at-
tacker to exploit the corresponding memory error vulnerabilities in running
software. To further reduce the attack surface, our third step ( 3©) is to
counter any attempt to exploit such vulnerabilities by developing memory
error defenses. Such defenses can prevent or detect an exploitation attempt
for each class of memory error vulnerabilities (e.g., buffer overflow, use-
after-free, etc.) and stop exploits from the get-go. While such techniques
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are effective at countering attacks, they cannot generally prevent or detect
all the exploitation attempts due to inherent limitations (e.g., custom mem-
ory allocators). In addition, deploying many memory error defenses to cover
all the classes of vulnerabilities may easily exhaust the performance budget
available in some application domains; hence, other solutions are needed.

3.2.4 Exploitation defenses

Exploitation attempts that escape our memory error defenses may still al-
low an attacker to mount successful attacks. To further reduce the attack
surface, our fourth step ( 4©) is to prevent any exploitation attempt from
successfully reaching its target by developing exploitation defenses. Such
defenses ignore the underlying cause (i.e., memory error) of each exploit
and focus on efficiently preventing or detecting successful exploitation us-
ing a variety of solutions, including randomization, isolation, and policy
enforcement techniques (as detailed in Section 4.4).

3.2.5 Integrity monitoring

While our defenses are effective at efficiently stopping most real-world at-
tacks, one cannot rule out implementation bugs in the defenses themselves,
or sophisticated attacks that bypass our multiple lines of defense, let alone
attacks that are not even part of our threat model. For this reason, our fifth
step ( 5©) is to develop integrity monitoring techniques that can constantly
check the integrity of running software, to detect successful exploitation at-
tempts. Once any such attempt is detected, recovery measures can be taken
to resume execution in a sane state.

3.2.6 Recovery

Our sixth and final step ( 6©) is to develop error recovery techniques that
can revert the execution of running software to a safe state, once erroneous
conditions are detected. Our techniques rely on efficient memory check-
pointing to periodically save the state of the running software, and support
switching to a saved checkpoint on demand. Recovery techniques are useful
to resume the execution in a benign state after detecting a memory error, an
exploitation attempt, or a software integrity violation, using our core soft-
ware technologies. In other words, our core software technologies are use-
ful to virtualize a memory error exploit into a generic “fail-stop error”, while
our recovery techniques are useful to virtualize the latter into a “recoverable
software error”. This strategy allows us to resume execution in a consistent
pre-exploitation state. In practice, recovering failed software components
poses nontrivial challenges and may require intervention in both the soft-
ware and the runtime. These issues are better detailed in Section 4.6.
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3.3 Residual attack surface

While SHARCS embraces an end-to-end approach to systems security in the
setting considered, it is important to challenge some of our own assumptions
and analyze the residual attack surface left to an attacker. For this reason,
as part of WP4, we also consider sophisticated attack techniques that can
bypass even advanced defenses and carefully evaluate their impact. We are
specifically interested in evaluating the strength of state-of-the-art (and our
own) software defenses against attacks not included in our threat model,
with a particular focus on side-channel attacks and hardware fault attacks.
This is work in progress and we will further report on our efforts in D4.3.
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Design

This chapter details the design of the SHARCS software technologies. For
each design layer, we outline the contributions made by SHARCS software
technologies and illustrate the design of one or more leading solutions in
different application domains. This is meant to exemplify the solutions de-
veloped by T4.2, T4.3, and T4.4 in every given design layer, but without
aiming for completeness. For a more complete and up-to-date view of the
solutions developed in every design layer, we refer the reader to the SHARCS
publication page1.

Furthermore, we use Control-Flow Integrity (CFI) exploitation defenses
as pilot technologies to illustrate the versatility dimension of our security
philosophy. For this purpose, we present different CFI solutions that auto-
matically balance performance and security in an optimal way, based on the
given implementation constraints. We focus on CFI, given that its goal is
to enforce statically derived control-flow invariants during the execution, to
detect control-flow diversion attacks. This thwarts unauthorized execution
primitives, which we identified as the most general and damaging primitives
based on our requirements (Chapter 2).

4.1 Software verification

To verify software components for correctness, T4.3 develops scalable vul-
nerability reporting tools based on symbolic interpretation. These tools are
applicable when the source code of a given component is available. In the
following, we present the design of the ExpliSAT tool as the leading software
verification technology developed in WP4.

1http://www.sharcs-project.eu/publications
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4.1.1 ExpliSAT

The notion of concolic verification is typically used in the context of static
analysis and dynamic testing and refers to a hybrid software verification
technique that combines concrete values of control variables with symbolic
representation of data. This technique is now used in many symbolic ex-
ecution tools, such as DART [37], CUTE [75], KLEE [20], and others. The
tool we use in the framework of the SHARCS project, Explisat [17], is based
on a similar algorithm, but instead of executing the program on each of
the control paths, it, essentially, builds a model of each explicit control flow
path with symbolic data variables and invokes a decision procedure (SAT)
to determine whether there exists an instantiation of this path that violates
correctness assertions. This technique is called symbolic interpretation, since
rather of executing each control path, the tool actually interprets every in-
struction symbolically, getting at the end a symbolic formula that represents
a set of all feasible input values for this execution path. By solving this sym-
bolic formula, we can find a set of concrete input values for this path, thus
if the path leads to an error we end up with the set of input values required
for realization of this error.

Symbolic interpretation is an extremely powerful tool when looking for
the corner case behaviors of the application under test. Since we use sym-
bolic representation for each input, the algorithm is completely independent
of having any prior knowledge about “interesting scenarios” that usually
comprise a set of testing data, but rather discovers those scenarios itself.
This way, it becomes an ultimate method for finding unknown behaviors in
the application, part of which can actually be the security vulnerabilities,
exploitable by some corner case, carefully crafted input.

To detect erroneous scenarios, ExpliSAT relies on user-provided func-
tional checks (a.k.a assertions), as well as a reach set of built-in checks, that
cover most of the memory error vulnerabilities (see Section 3.1). Those
checks are performed during the interpretation without a need to specify
them as assertions. Below is a partial list of those checks:

• Valid pointer dereferencing – on every pointer dereferencing opera-
tion, ExpliSAT checks that the pointer is properly assigned, i.e. points
to a valid memory block.

• Buffer overflow – on every memory access, ExpliSAT verifies that the
access is within the allocated chunk.

• Variable initialization – on every variable access, ExpliSAT checks
that the variable was assigned previously.

• Memory leaks – at the end of every execution path, ExpliSAT checks
that all memory chunks that were dynamically allocated are released
(this check is enabled via command-line option).
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1 void foo ()
2 {
3 int x;
4 int result = 0;
5 int counter = 0;
6

7 while ( counter < 50) {
8 x = nondet_int ();
9 if (x > 0) {

10 result = result + 1;
11 if ( result % 2 == 1) {
12 result = result * 2;
13 }
14 }
15 else {
16 result = result - 1;
17 }
18 counter = counter + 1;
19 }
20 }

Figure 4.1: C code snippet demonstrating path explosion problem

Contributions Symbolic interpretation explicitly traverses each and every
feasible execution path in the application. This is an inherent weakness of
the method – in the real-scale applications, number of such paths grows ex-
ponentially, making it impossible to cover the whole input space. Moreover,
the tool may become “stuck” in some corner case behavior, exploring more
and more newly created paths, and miss errors in other directions. In the
next section, we present a novel algorithm that aims at coping with this
problem, by dynamically reducing the number of explicitly explored paths
using path merging2.

Branch reduction algorithm Symbolic interpretation is an efficient tech-
nology for data handling, being able to process a bunch of values of variables
at every step. On the other hand, program control is processed explicitly, s.t.
the engine traverses every path in the Control Flow Graph (CFG). Inherently,
this technique introduces a drawback, known as the path explosion problem.
When a series of n multiple if-statements is present in a program, the num-
ber of possible execution paths may grow exponentially up to 2n paths, thus
making a symbolic execution engine run virtually forever. To illustrate the
problem and the ExpliSAT solution, we use the following running example.
Consider the simple C code snippet, shown in Figure 4.1, and its correspond-
ing CFG, presented in Figure 4.2.

2Patent 15/084617 “Dynamic control-to-data transformation to cope with path explosion
in symbolic interpretation and/or execution”
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Figure 4.2: CFG of the code demonstrating path explosion problem

In this example, the while loop iterates 50 times, and since it contains
two nested if-statements (line 9 and line 11), symbolic execution should
traverse nearly 250 paths, which is practically infeasible.
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In ExpliSAT, we designed and implemented an algorithm that faces the
above problem by avoiding state splitting on if-statements with nondeter-
ministic conditions. For every if-statement where both then-branch and
else-branch are feasible, we first find on the CFG a closing node of that if-
statement. In our example in Figure 4.2, node 1282 closes the if-statement
of node 1268, and it also closes the if-statement of node 1271. After es-
tablishing the closing node, the algorithm first traverses then-side of the if-
statement, and when reaching the closing node it moves back to the starting
node of the if-statement and traverses its else-side. On every traversal, the
relevant context condition is maintained - the condition of the if-statement
for then-side traversal and the negation of this condition for else-side traver-
sal. For nested if-statements the conjunction of their context conditions is
maintained. Though the algorithm traverses both then-branch and else-
branch of the if-statement, variable assignments under these branches are
done only once (either those under then-branch or those under else-branch).
To achieve this in our implementation, we convert every assignment into a
conditional assignment, where a new value is assigned under the context
condition. In other words, we augment the right-hand-side (rhs) of every
assignment with the context condition, thus forming a conditional rhs ex-
pression, where the original rhs appears under the context condition, and
the old value of the left-hand side appears under the negation of the context
condition.

We illustrate the algorithm run on the CFG in Figure 4.2. The first
if-statement (node 1264), resulting from the while loop condition, is al-
ways deterministic, since the counter variable is initialized to zero and in-
cremented in every iteration. Thus, at the beginning the algorithm pro-
ceeds to the body of the loop. It reaches the if-statement in node 1268,
which has a nondeterministic condition (nondet1 > 0), where nondet1 is
a symbol returned by the first call to nondetint() function. Then, the clos-
ing node (node 1282) of the if-statement is found, and the algorithm pro-
ceeds to then-branch, while keeping the context condition (nondet1 > 0).
Next, the assignment in node 1270 is processed. Rhs of the assignment is
augmented with the condition as follows: result ← ((nondet1 > 0)?1 :
0). This is because result is initialized to 0, so the old value of result
is 0 and its new value is 1. Next, node 1271 is processed. This is an if-
statement with condition result%2 == 1. Note, that this condition ex-
pression is nondeterministic, because the value of result is nondetermin-
istic expression ((nondet1 > 0)?1 : 0). However, under the condition of
the outer if-statement (nondet1 > 0) the value of result is 1, and thus the
expression result%2 == 1 is simplified to true. Thus, the control moves
to node 1273, and the value of result is updated as follows: result ←
((nondet1 > 0)?(((nondet1 > 0)?1 : 0) ∗ 2) : ((nondet1 > 0)?1 : 0)).
Next, the control reaches node 1282, which is the closing node of the outer
if-statement, and the algorithm moves to the else-side. The context condi-
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tion is updated to the negation of the if-condition: !(nondet1 > 0). The
control reaches node 1280, and result is updated to result ←!(nondet1 >
0)?(((nondet1 > 0)?(((nondet1 > 0)?1 : 0)∗2) : ((nondet1 > 0)?1 : 0))−1) :
((nondet1 > 0)?(((nondet1 > 0)?1 : 0) ∗ 2) : ((nondet1 > 0)?1 : 0)). Then
the control reaches again node 1282 (the closing node of the if-statement),
and if-condition is removed from the context condition, resulting in con-
text condition be true. Finally, the algorithm reaches node 1264, and next
iteration starts.

We demonstrated how one iteration of the loop is processed within a
single path, without state splitting at all. In a similar way all iterations of
the loop are processed. Thus, no path explosion happens, and the complex-
ity moves to growing conditional expressions (like the value of result in
our example). However, big expressions are efficiently processed by a SAT
solver, and the above example completes with our algorithm within a few
seconds, whereas it runs into infinity with a classical symbolic interpretation
algorithm.

Note, there are cases when branch reduction cannot be performed when
keeping semantically equivalent model. For example, given a loop with a
nondeterministic condition, the if-statement representing the loop condi-
tion cannot be reduced in such a way. The intuition about this problem is
that different branches of such an if-statement ’go’ to different paths and do
not converge in a single node - one side goes back to the beginning of the
loop and the other exits the loop. In this case, a loop closing node cannot
be identified. Conceptually, if-statements can be classified into two types:
if-statements actually changing the control flow (like the while condition
descibed above), and those temporarily deviating from the main flow for the
sake of different assignments to variables or different function calls. Gener-
ally, the former if-statements cannot be reduced by our algorithm, while the
latter ones are efficiently reduced.

4.2 Software testing

To perform high-coverage software testing of potentially vulnerable soft-
ware components, WP4 develops deep fuzzing techniques based on online
program analysis. These techniques are applicable to both source and binary
programs. In the following, we present the design of the VUzzer tool [69]
as the leading software testing technology developed in WP4.

4.2.1 VUzzer

Fuzzing is a testing technique to catch bugs early, before they turn into
vulnerabilities. However, existing fuzzers have been effective mainly in
discovering superficial bugs, close to the surface of software (low-hanging
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bugs) [34, 29], while struggling with more complex ones. Modern pro-
grams have a complex input format and the execution heavily depends on
input values conforming to the format. Typically, a fuzzer blindly mutates
values to generate new inputs. In this (pessimistic) scenario, most of the
resulting inputs do not conform to the input format and are rejected in the
early stages of the execution. This makes a traditional random fuzzer often
ineffective in finding bugs that hide deep in the execution.

State-of-the-art fuzzers such as AFL [95] employ evolutionary algorithms
to operate valid input generation. Such algorithms employ a simple feed-
back loop to assess how good an input is. In detail, AFL retains any input
that discovers a new path and mutates that input further to check if doing
so leads to new basic blocks. While simple, this strategy cannot effectively
select the most promising inputs to mutate from the discovered paths. In
addition, mutating an input involves answering two questions: where to
mutate (which offset in the input) and what value to use for the mutation?
The problem is that AFL is completely application-agnostic and employs a
blind mutation strategy. It simply relies on generating a huge amount of
mutated inputs in the hope of discovering a new basic block. Unfortunately,
this approach yields a slow fuzzing strategy, which can only discover deep
execution paths by sheer luck. Fortunately, we can increase the efficiency
of AFL-like fuzzers manifold by accounting for information that answers the
questions above.

In this direction, the use of symbolic and concolic execution has shown
promising results [80, 55]. Driller [80] uses concolic execution to enable
AFL to explore new paths when it gets stuck on superficial ones. However,
fuzzers like AFL are designed to target arbitrarily large programs and, in
spite of several advancements, the application of symbolic/concolic tech-
niques to such programs remains a challenge [21]. For example, Driller was
benchmarked with 126 DARPA CGC binaries [4] and when AFL got stuck on
41 such binaries, its concolic engine could only generate new meaningful in-
puts from 13 of such binaries. The results reported in the LAVA paper [34]
evidence similar problems with symbolic execution approaches. In another
recent study [92], the authors reported that symbolic execution-based input
generation (using KLEE) is not very effective at exploring meaningful and
deeper paths. In essence, while combining fuzzing with symbolic execution
is an interesting research area, this approach also significantly weakens one
of fuzzing’s original key strengths: scalability.

We present VUzzer, an application-aware evolutionary fuzzer which is
both scalable and fast to discover bugs deep in the execution. In contrast to
approaches that optimize the input generation process to produce inputs at
maximum rates, our work explores a new point in the design space, where
we do more work at the front-end and produce fewer but better inputs.
The key intuition is that we can enhance the efficiency of general-purpose
fuzzers with a “smart” mutation feedback loop based on control- and data-
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flow application features without having to resort to less scalable symbolic
execution. We show that we can extract such features by lightweight static
and dynamic analysis of the application during fuzzing runs. Our control-
flow features allow VUzzer to prioritize deep (and thus interesting) paths
and deprioritize frequent (and thus uninteresting) paths when mutating in-
puts. Our data-flow features allow VUzzer to accurately determine where
and how to mutate such inputs. Thanks to its application-aware mutation
strategy, VUzzer is much more efficient than existing fuzzers.

Contributions We make the following contributions:

1. We show that modern fuzzers can be “smarter” without resorting to
symbolic execution (which is hard to scale). Our application-aware
mutation strategy improves the input generation process of state-of-
the-art fuzzers such as AFL by orders of magnitude.

2. We present several application features to support meaningful muta-
tion of inputs.

3. We implement and evaluate VUzzer, a fully functional fuzzer that im-
plements our approach and show that it is highly effective in practice.
To foster further research, we will also open source our prototype.

4.3 Memory error defenses

To disarm residual memory error vulnerabilities, WP4 develops both mem-
ory error detection and containment techniques, with a focus on efficient
and practical solutions. The former offer attack detection guarantees, while
the latter are normally more efficient and versatile. In the following, we ex-
emplify this property by presenting the design of two representative memory
error defenses developed in WP4: TypeSan [42] and VTPin [71]. Both seek
to harden C++ software against memory error vulnerabilities (type con-
fusion and use-after-free respectively), but the former is only applicable to
source programs while the latter can directly operate at the binary level.

4.3.1 Memory error detection: TypeSan

Type confusion bugs are emerging as one of the most important attack vec-
tors to compromise C++ applications. C++ is popular in large software
projects that require both the modularity of object-oriented programming
and the high efficiency offered by low-level access to memory and system
intrinsics. Examples of large C++ programs are Google Chrome, large
parts of Microsoft Windows and Firefox, and the Oracle Java Virtual Ma-
chine. Unfortunately, C++ enforces neither type nor memory safety. This
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lack of safety leads to type confusion vulnerabilities that can be abused
to attack certain programs. For example, exploitable type confusion bugs
have been found in a wide range of software products, such as Adobe
Flash (CVE-2015-3077), Microsoft Internet Explorer (CVE-2015-6184), PHP
(CVE-2016-3185), and Google Chrome (CVE-2013-0912).

Current defenses against type confusion [10, 52] are impractical for
production systems, because they are too slow, suffer from low coverage,
and/or only support non-polymorphic classes. The greatest challenge in
building an always-on type checker is the need for per-object metadata
tracking which quickly becomes a bottleneck if the program allocates, frees,
casts, and uses objects at high frequency (e.g., on the stack).

To address the high overhead and the low coverage of existing solu-
tions, we present TypeSan, an explicit type checking mechanism that uses
LLVM-based instrumentation to enforce explicit type checks. Compared to
previous work, TypeSan provides extended coverage and massively reduced
performance overhead. Our back-end uses a highly efficient metadata stor-
age (based on a shadowing scheme with a variable compression ratio) to
look up types from pointers. This limits the amount of data written for large
allocations (such as arrays of objects) while at the same time supporting
efficient and scalable lookups, requiring only 3 memory reads to look up a
type. We envision this new type of metadata storage to be also useful for
other sanitizers, e.g., to verify memory safety, and we plan to explore further
applications in future work.

We primarily envision TypeSan as an always-on solution, making explicit
type checks practical for commodity software. Used in attack prevention
mode, TypeSan-hardened binaries are shipped to end users and terminate
the program on bad casts, thereby preventing zero-day type confusion ex-
ploits. Combined with liveness reports for modern software (like the Google
Chrome and Mozilla Firefox crash reporters), such a deployment signals the
developers about potentially missing type checks. In addition, TypeSan can
be used in software testing where TypeSan identifies potential bad casting
in the source code. In relaxed mode, TypeSan simply logs all bad casts to
scan for underlying vulnerabilities, e.g., when running a test suite. We have
implemented a prototype of TypeSan for Linux on top of LLVM 3.9. Our
prototype implementation is compatible with large source code bases, such
as the SPEC CPU2006 C++ programs and the Firefox browser.

Contributions We make the following contributions:

1. We present a design for high-performance, high-coverage typecast ver-
ification on legacy C++ code that is much faster than the state-of-the-
art detector with lower memory overhead and orders of magnitude
more typecasts.
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2. We shows how our design can deliver both nearly complete coverage
and performance that is suitable for production usage.

3. We present an automatically generated test suite for typecasting ver-
ification to ensure that all different combinations of C++ types are
properly handled.

4. We present an open-source implementation of our TypeSan design,
available at https://github.com/vusec/typesan.

4.3.2 Memory error containment: VTPin

The recent advances in software hardening have undoubtedly made ex-
ploitation a challenging craft [68]. Yet, despite the plethora of defenses
in place [57], attackers still find ways to compromise essential commodity
software, like web browsers [8, 9]. Modern exploits are highly sophisticated
and typically leverage a variety of different vulnerabilities to bypass estab-
lished protections, such as address space layout randomization (ASLR) [63],
non-executable memory [15], and sandboxing [2]. To this end, temporal
safety errors, and particularly use-after-free vulnerabilities, are becoming a
key component of the attackers’ arsenal [1, 7]. Interestingly, exploiting use-
after-free bugs does not require corrupting memory; instead, an attacker
merely needs to utilize dangling pointers, still accessible by a process, for
hijacking the control flow.

Temporal safety violations are extremely effective when (ab)used for
compromising large C++ programs. Virtual objects contain (at least) one
pointer towards a Virtual Table (VTable), which further contains (function)
pointers to the implementation of the methods associated with the respec-
tive object(s). An attacker can hijack the VTable by forcing the vulnerable
program to carefully allocate memory with attacker-controlled data; assum-
ing there are still dangling pointers that (now) point to the hijacked VTable,
the control flow of the program can be redirected according to the needs
of the attacker. Notice that VTable hijacking, through use-after-free, can be
combined with other attack vectors for delivering the end-to-end exploit.
In fact, in recent Pwn2Own security contests, all major web browsers were
compromised using exploits that contain a step where VTable hijacking was
the key attack vector [8, 9].

We present VTPin, a system for protecting software against VTable hi-
jacking in the least intrusive way. VTPin works directly with C++ binaries
that provide Run-time Type Information (RTTI), does not rely on complex
binary analysis or rewriting (often hindering practical deployment [86]),
does not interfere with the strategies and policies imposed by the alloca-
tor of the protected program, and provides good performance. VTPin pins
all freed VTable pointers on a safe VTable by instrumenting every free call
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of a running program. For every free, VTPin quickly identifies if it is as-
sociated with a virtual object; in case it is, VTPin handles the deallocation
accordingly, otherwise the deallocation is forwarded to the program’s allo-
cator. VTPin deallocates all space allocated by the object, but preserves its
VTable pointers. Additionally, the value of the contained VTable pointer(s)
is replaced with the address of a special VTable that VTPin controls. Any
dangling pointer, if triggered, can only invoke a method provided by the
corresponding safe object. Subsequently, all virtual-method calls due to dan-
gling pointers are not simply prevented, but can also be logged, tracked, and
patched.

VTPin follows two strategies for pinning freed virtual objects. If the
memory allocator provides reallocation of memory with particular place-
ment, such as the standard GNU allocator, then VTPin pins just the VTable
pointer(s) and frees the rest of the object. Otherwise, for slab allocators
that do not support reallocation with placement, or for objects with mul-
tiple VTable pointers, VTPin pins all the VTable pointers and maintains all
data associated with the freed virtual object. Notice that VTPin handles
only the deallocation of objects; all other memory operations, including the
allocation of virtual objects, are outsourced to the default allocator of the
protected program. VTPin pins only virtual objects, and in most cases only
a single pointer (i.e., 8 bytes) survives. Hence, the induced memory over-
head is low. In addition, VTPin employs a conservative garbage collector for
periodically removing all pinned objects and reclaiming back their occupied
memory.

Contributions We make the following contributions:

1. We design and implement VTPin: a system to protect VTable pointers
from exploitation through use-after-free vulnerabilities. VTPin does
not require access to the source code of the protected program, is not
based on binary analysis or rewriting, is highly portable, and does not
interfere with the semantics and policies used by standard allocators.

2. We evaluate VTPin with the C++ programs of SPEC, Chromium, and
Mozilla Firefox and show that our solution is amenable to practical
deployment.

4.4 Exploitation defenses

To prevent attacks based on residual exploitable memory error vulnerabil-
ities, WP4 develops both passive and active exploitation defenses. Passive
defenses seek to prevent successful exploitation of a given vulnerability by
means of randomization techniques. Active defenses, in turn, operate secu-
rity checks during the execution to detect exploitation attempts from pro-
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gram invariants violations. Our focus in both cases is to improve the state of
the art in terms of security and performance, by investigating techniques in
different application domains. In the following, we first present the design
of the Anti-ROP and sJMP tools as representative of binary-level passive ex-
ploitation defenses developed in WP4 and then turn our attention to active
defenses.

4.4.1 Passive defenses: Anti-ROP

Return Oriented-Programming (ROP) is an exploit technique where an at-
tacker takes control of a program flow by smashing the call stack, to execute
instruction sequences. In the ROP technique, the attacker borrows gadgets
(small pieces of code) from the hijacked program to execute the malicious
code. ROP is widely adapted by hackers to easily bypass Data Execution Pre-
vention (DEP), which is implemented in hardware and software to prevent
code injection and execution. Thus by using ROP, the attackers achieve the
same goals achieved by code injection.

Many techniques were developed to prevent ROP attack where Address
Space Layout Randomization (ASLR) is implemented almost in all operating
system which challenges the attacker to guess the addresses of the gadgets
by randomizing the address bases of the sections. There are parts and files
that are not randomized which leave weak and soft spots in the program
that attackers use to invoke their malicious intentions.

We have developed Anti-ROP, a ROP-prevention system compatible to all
platforms and operating system. When building a ROP attack, the attackers
assumption is that the gadgets she needs are in absolute addresses or shifted
by constant bytes, furthermore, if the attacker detects the shifting for one
gadget, then, she detects all gadgets and this is what we smash with our
solution, thus, the detecting of the shift of one gadget does not reveal the
entire shifting. Our solution can be implemented on Windows and Linux and
other operating system, (i) analyzes PE/ELF binary executables, (ii) builds
chunks composed of a number of function blocks and (iii) reorganizes them.

Every phase of the process can be invoked online or offline. The ran-
domized file which is created has the same functionality of the original file
so that the randomization process requires intervention in the structure of
the file, fixing headers, updating branches and tables, etc. As we can see,
unlike ASLR technology, finding a gadget in one block, does not reveal the
addresses of the other gadgets.

Contributions We have developed a new solution to counter ROP attacks
based on fine-grained code randomization. Our solution allows blocking
memory corruption Zero-Day attacks, and is able to detect these attack at-
tempts, all with next to zero performance cost.
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Figure 4.3: Anti-ROP Architecture

4.4.1.1 sJMP

The sJPM (secure jump) technique has two goals: (a) drastically reduce the
likelihood of successful ROP attacks, and (b) allow access control policy for
library calls to be enforced at the user-code level.

Under our scheme, code space is partitioned into a number of regions –
roughly, but not necessarily, isolating each library in a separate region – and
controlling access to intra-region jumps. We refer to the latter category as
secure jumps or sJMPs.

Each time an sJMP is performed, special policy evaluation code is ex-
ecuted, to determine whether the control flow transfer is warranted (i.e.
consistent with the program run-time policy). This allows high-level policy
checks to be carried out in a similar fashion to the systrace engine [67],
which, however operates at the system call level.

Return-oriented-programming typically relies on locating within the code
space of the victim process, sequences that end in a return instruction (“gad-
gets”). By combining these “gadgets” the attacker can coopt the victim to
perform unintended actions. The partitioning of the address space, per-
formed by sJMP, limits the space that attackers may search to locate gad-
gets. If the attacker attempts to invoke a gadget in another region, the
policy engine will be invoked and the attack detected.

sJMP combines two techniques developed locally, namely Instruction Set
Randomisation (ISR) [47] and Access Controls For Libraries and Modules
(SecMOD) [48]. SecMOD relied on an RPC (remote procedure call) based
mechanism to force the user-level code to perform library calls only via the
library policy enforcement engine.

The sJMP mechanism developed at TUBS, leverages ISR to assign dif-
ferent encryption keys to each region, so that simply “jumping” to another
region will not work since the correct key has to be inserted into the ISR
register. Jumps within a region work as before, but inter-region jumps are
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monitored. In our first prototype we invoke the kernel, which loads the ISR
key for the destination region before executing the jump. This technique,
though, will incur some overhead, as a supervisor transition is required for
every intra-region jump. Another consequence of this technique is that the
RTN instructions will also require a similar check because in this case as well
the ISR key will need to be changed.

In order to dispense with the kernel invocation we are developing a
technique using new hardware support for “gates” to each region. Under
this scheme, when the calling code needs to access a specific remote region,
it must go through one of the gates in the destination region to get the
correct ISR key loaded. The gate instruction automatically loads the ISR
key, without having to invoke the kernel. After the gate, policy evaluation
code may be added to implement policy enforcement. The sJMP mechanism
will not allow code jumping into the region to bypass the policy check.

Contributions Our contributions are as follows:

1. We have developed a mechanism that leverages ISR to mitigate code
reuse / injection attacks.

2. Mandatory policy checks are carried out whenever a library function
is called.

This work is in progress and will be later submitted to an academic con-
ference.

4.4.2 Active defenses

To illustrate our approach for active defenses, we now present the design of
our pilot CFI technologies tailored to different application domains. PathAr-
mor [88] implements hardware-supported CFI on source or binary programs—
using branch tracing facilities provided by commodity hardware. ShrinkWrap [41]
implements software-only CFI on source C++ programs. TypeArmor [89]
implements software-only CFI for generic binary programs. All these solu-
tions cover the entire spectrum of implementation constraints dictated by
the SHARCS models (Chapter 2), with the exception of hardware-only CFI
already covered by WP3 (see HCFI in D3.2). Finally, we complement our
CFI solutions with a GPGPU-based network intrusion detection system.

4.4.2.1 PathArmor

Control-Flow Integrity (CFI) [13] has developed into one of the most promis-
ing techniques to stop code reuse attacks against C and C++ programs. Typ-
ically, such attacks circumvent common defenses such as DEP by diverting
a program’s control flow to a set of Return-Oriented Programming (ROP)
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gadgets [77, 26]. Likewise, they defeat widely deployed ASLR by either
targeting gadgets at fixed (non-randomized) addresses [19], or by dynami-
cally disclosing the addresses of randomized gadgets [78]. CFI promises to
prevent all such attacks by ensuring that all control transfers conform to the
program’s original Control Flow Graph (CFG). In theory, CFI is very power-
ful and, in its purest and ideal form, provably secure against most integrity
violations of the control flow [12].

Ten years after the original CFI proposal [13], however, researchers are
still working to find practical CFI implementations [97, 96, 87, 51, 27, 36,
62], able to approximate the security of the purest form of CFI with ac-
ceptable performance. Common CFI solutions, including state-of-the-art
binary-level implementations such as bin-CFI [97] and CCFIR [96], attempt
to substantially relax constraints on the set of legal targets for both the
backward (e.g., ret instructions) and forward (e.g., indirect call instruc-
tions) control edges. While doing so reduces the performance overhead to
a few percent only, it also provides more degrees of freedom for the attack-
ers. Other even more lightweight CFI solutions, such as ROPecker [27]
and kBouncer [62], build on heuristics and hardware support to detect
anomalous control flows—which resemble ROP gadget chains—and stop
many current exploitation attempts at low performance overheads. Unfor-
tunately, a string of recent publications comprehensively shows that it is
possible to circumvent all these lightweight CFI solutions with relatively lit-
tle effort [38, 39, 31, 23, 74].

A key problem with traditional CFI solutions—even recent source-level
fine-grained ones [87]—is that they enforce only context-insensitive CFI
policies, which examine control edges in isolation and attempt to statically
derive the resulting superset of all the possible targets according to the CFG.
The lack of context inevitably results in weak CFI invariants, allowing at-
tackers to freely chain edges together and form paths that are even trivially
infeasible in the original CFG (e.g., returning to a function never on the
active call stack [38]).

Context-sensitive CFI techniques are a promising way to address this
problem, since they rely on context-sensitive static analysis to associate
CFI invariants to control-flow paths—i.e., multiple consecutive edges—in
the CFG and enforce such invariants on execution paths at runtime. The
stronger security guarantees provided by context-sensitive CFI techniques
have been acknowledged as early as in the original CFI proposal, but their
real-world adoption has been rapidly dismissed as impractical [13].

We demonstrate that Context-sensitive CFI (CCFI) can indeed be imple-
mented in an efficient, reliable, and practical way for real-world applica-
tions. We present PathArmor3, the first binary-level CCFI solution which

3PathArmor is open source, available via https://github.com/dennisaa/
patharmor
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enforces context-sensitive CFI policies on both the backward and forward
edges. PathArmor relies on commodity hardware support to efficiently and
reliably monitor execution paths to sensitive functions which can be used
to mount control-flow diversion attacks [62], and uses a carefully opti-
mized binary instrumentation design to enforce CCFI invariants on the mon-
itored paths. PathArmor’s path invariants are derived by a scalable context-
sensitive static analysis performed over the CFG on-demand, which uses
caching of path verification steps to achieve high efficiency. Verification it-
self is also very efficient, since all the CFI checks are batched at sensitive
program points.

To show the practicality of our design, we have prototyped two context-
sensitive and binary-level CFI policies (for the backward and forward edges,
respectively) on top of PathArmor. Moreover, our framework can also serve
as a general foundation for even stronger CCFI implementations, for in-
stance using context-sensitive data-flow analysis at the source level. Even
in the current setup, PathArmor provides a comprehensive CCFI protection
system with much stronger security guarantees than traditional CFI solu-
tions, while matching or even improving their performance. Moreover, due
to its optimized design, PathArmor can also serve as an efficient basis for
fine-grained context-insensitive CFI (CCFI) policies.

Contributions Our contribution is threefold:

1. We identify the key challenges towards practical CCFI implementa-
tions and investigate opportunities to address these challenges in real-
world applications and commodity platforms.

2. We present PathArmor, a framework to efficiently support arbitrary
context-sensitive and context-insensitive CFI policies on commodity
platforms. To fulfill its goals, PathArmor relies on hardware support,
binary instrumentation, and on-demand static analysis to batch even
sophisticated CFI checks at the relevant sensitive points in a binary. We
complement our solution with fine-grained CCFI policies and simple
but comprehensive (backward and forward edge) CCFI policies, mak-
ing PathArmor the first practical end-to-end CCFI implementation.

3. We show that PathArmor is efficient and can significantly restrict the
number of legal control flows compared to traditional CFI solutions.

4.4.2.2 ShrinkWrap

C++ is a popular, fast, object-oriented (OO) language used to develop some
of the most popular Web browsers, including Chrome and Mozilla. Due to
their popularity, size and complexity, applications developed in C++ and
their virtual function tables (or VTables) in particular are frequently targeted
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by attackers. VTables are based on indirect calls, which is what makes them
a prominent targets for hijacking the control flow of a program.

To prevent such control-hijacking attacks, the research community has
turned to control-flow integrity (CFI). First conceived in 2005 [13], CFI has
seen a long line of followers and variants since [96, 97, 60]. CFI strives to
constrain the control flow of a program to its statically-determined control-
flow graph (CFG) as strictly as possible. In principle, CFI can be very ef-
fective in preventing a wide-range of attacks. In recent times however, we
bear witness to a cat-and-mouse game, where each new CFI technique is
immediately attacked and bypassed.

We here aim to provide the final say on VTable protection, by tightly
constraining virtual function pointers (vfp) to the VTables corresponding to
the classes intended by the programmer—as defined by the semantics of the
C++ language. We examine a recent compiler-based CFI approach, namely
VTV [87] and find that its own vfp restrictions are not entirely accurate.4

We proceed by extending VTV to apply even tighter restrictions to the avail-
able VTable targets and argue that our approach is optimal. More precisely,
we aim at offering the best protection possible to vfps in a context insensi-
tive fashion. We build our solution into VTV and evaluate it by means of a
new framework for testing it. Using the framework, we show that it is the
strictest access policy possible for VTables without breaking legitimate code.
Last but not least, our solution is faster than the original VTV implementa-
tion.

Our investigation exposes three weaknesses of existing schemes. First,
we find that existing solutions fail to precisely identify the object types asso-
ciated with a virtual call-site, even in the presence of source code. Second,
we find that even state-of-the-art solutions, like VTV, handle multiple inher-
itance over-permissively. Normally, every class has its own VTable and base
classes contain all the VTables of their subclasses. When a class C inherits
from multiple classes, VTV extends the VTables of its base classes to include,
and thus share, all entries in their individual VTables. I.e., “sibling” classes
share VTable entries. This is another example where control-flow integrity
is loosely enforced. Finally, we identify a fundamental error in the assump-
tions made by other solutions. Previous approaches operate on the premise
that allowable control-flow transfers at call-sites (i.e., where a method of an
object is invoked) can be determined solely based on the type of the object
pointer involved. We show that this assumption is false and more informa-
tion must be extracted from the call-site to reach optimal protection.

We use our observations to design ShrinkWrap, a new VTable-protection
scheme that uses information available during compilation to extract the
most restrictive set of VTables that should accessible at a virtual call-site
within the code. We implement this enhanced, fine-grained design on top

4VTV is now a standard compiler option also used in production systems.
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of VTV and evaluate it by creating a testing framework that exhaustively ex-
plores all possible combinations of class inheritance and method invocation
to demonstrate that our technique provides the best possible defense for
VTables. We also demonstrate that our modifications do not break complex,
real-life applications and that our solution is faster than the original VTV.

Contributions We summarize our contributions below:

1. We identify limitations in the design and implementation of current
VTable protection schemes, including the primary industrial imple-
mentation, VTV.

2. We identify key design decisions that should be accounted for, when
dealing with VTable protection. This also includes a definition of opti-
mal (minimal) VTables sets that should be accessible at each point in
the program.

3. We develop a practical testing methodology to evaluate VTable protec-
tion schemes and to highlight potential limitations.

4. We implement ShrinkWrap, a prototype of the proposed protection
scheme and show it is more secure and efficient than state-of-the-art
solutions.

4.4.2.3 TypeArmor

Control-Flow Integrity (CFI) [13] is one of the most promising ways to
stop advanced code-reuse attacks. Unfortunately, enforcing it without ac-
cess to source code is hard in practice. The reason is that it requires an
accurate Control-Flow Graph (CFG) and extracting such CFG from binary
code is an undecidable problem. As a result, most existing binary-level
CFI implementations base their invariants on an approximation of the CFG
which leaves enough wiggle room for an attacker to launch successful ex-
ploits [23, 26, 31, 38, 39, 74].

While it may be possible to stop some advanced attacks using a perfect
shadow stack implementation [22], there is one class of attacks for which
there is no existing defense at the binary level whatsoever. This class of
function-reuse attacks, exemplified by Counterfeit Object-Oriented Program-
ming (COOP) [73], chains together calls to existing functions through legit-
imate callsites. This strategy preserves the integrity of the shadow stack,
while abusing the overapproximation of the extracted CFG to call the wrong
functions from these callsites. This attack is powerful since it allows for ex-
ploits that integrate smoothly with legitimate code execution. Unless there
is deep knowledge of the C++ class hierarchy semantics, which we can
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only extract if we have the source code [30], it is hard to tell a COOP ex-
ploit apart from a legitimate code sequence [73]. Lacking a handle on the
functions that a callsite may target leaves all the existing binary-level CFI
solutions unable to stop COOP attacks.

We revisit binary-level protection in the face of COOP attacks and follow-
up improvements [30]. We explore to what extent we can narrow down the
set of possible targets for indirect callsites and stop exploitation at the bi-
nary level. Our conclusion is not that all possible attacks can be stopped:
even the tightest CFI solutions with access to source code are unable to guar-
antee perfect protection against all possible attacks [22]. Nevertheless, we
demonstrate that TypeArmor, our binary-level protection prototype, can stop
all COOP attacks published to date and significantly raise the bar for an ad-
versary. Moreover, TypeArmor provides strong mitigation for many types of
code-reuse attacks (CRAs) for programs binaries, without requiring access
to source code. As researchers have shown that it is easy to bypass exist-
ing binary-level CFI defenses [23, 26, 31, 38, 39, 74], this is a significant
improvement.

TypeArmor incorporates a forward-edge CFI strategy that relies on con-
servatively reconstructing both callee prototypes and callsite signatures and
then uses this information to enforce that each callsite strictly targets match-
ing functions only. For example, TypeArmor disallows an indirect call that
prepares fewer arguments than the target callee consumes. Additionally, Ty-
peArmor incorporates a novel protection policy, namely CFC (Control-Flow
Containment), which further reduces the possible target set of callees for
each callsite. CFC is based on the observation that, if binary programs ad-
here to standard calling conventions for indirect calls, undefined arguments
at the callsite are not used by any callee by design. TypeArmor trashes these
so-called spurious arguments and thus breaks all published COOP and im-
proved COOP-like exploits. These exploits all chain virtual method calls that
disrespect calling conventions to achieve convenient data flows between
gadgets [30]. CFC eliminates these data flows via unused argument reg-
isters and thus stops such exploitation attempts.

Current binary-level solutions enforce “loose” forward-edge CFI policies,
often allowing control transfers from any valid callsite to any valid refer-
enced entry point [97, 96]. In the best case, existing policies only reduce
the target set by removing all entry points of other modules unless they
were explicitly exported or observed at runtime [64]. In contrast, TypeAr-
mor matches up indirect callsites with a more precise target set in a many-
to-many relationship. It relies on use-def analysis at all possible callees to
approximate the function prototypes, and liveness analysis at indirect call-
sites to approximate callsite signatures. This effectively leads to a more
precise CFG of the binary program in question, which could also be used by
existing mitigation systems to amplify their (context-insensitive) invariants
(e.g., PathArmor [88]).
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Contributions We make the following contributions:

1. We introduce techniques to recover callsite signatures and callee pro-
totypes for security enforcement purposes. Our techniques yield binary-
level control-flow invariants which approximate the type-based invari-
ants used in source-level solutions [87] and are thus much more pre-
cise than those used in prior binary-level CFI solutions [97, 96, 64].

2. We demonstrate that fully-precise, static forward-edge CFI is inher-
ently hard to achieve in a conservative fashion, due to the unavoid-
able precision loss when deriving traditional CFI-style target-oriented
invariants at the binary level. To compensate for the precision loss, we
complement our CFI strategy with a new technique termed Control-
Flow Containment (CFC). CFC relies only on our callsite analysis to ef-
fectively contain code-reuse attacks. This approach improves the qual-
ity of control-flow invariants of traditional target-based approaches,
overall resulting in a strict binary-level CFI strategy.

3. We implement TypeArmor, a new strict CFI solution for program bi-
naries. We show that TypeArmor is efficient and can enforce much
stronger forward-edge invariants than all the existing binary-level CFI
solutions.

4. We show that our strict binary-level CFI strategy can mitigate ad-
vanced attacks in complete absence of source information or C++
semantics. For example, TypeArmor can stop all published COOP [73]
exploits and their improvements [30].

4.4.3 GPGPU network intrusion detection systems

Network Intrusion Systems act as a front line defense in order to filter in-
coming traffic for malicious activity. In cloud infrastructures the amount of
traffic that needs to filtered is massive. A proposed solution to the extended
network packet processing requirements of such infrastructures, is to of-
fload the packet processing to commodity hardware such as General Purpose
Graphics Processing Units. GPUs are specialized for intensive highly parallel
computations like signature matching. Additionally, GPGPUs are relatively
cheap and widely used in large server infrastructures as co-processors.

In order to use GPGPUs for network intrusion detection efficiently we
have developed the following software pipeline. A packet acquisition mod-
ule collects all the incoming packets inside a ring buffer. Every time the
buffer is full the batch of packets is transfered to the GPGPU. The GPGPU
scans the batch of packets for matching rules and returns the results back to
host. The host is responsible to report any malicious event detected. A batch
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Figure 4.4: The GPGPU NIDS architecture

of packets instead of streaming is important in order to reduce memory traf-
fic between host and device memory and maximally utilize the GPGPU.

This work is in progress and will be later submitted to an academic con-
ference.

4.5 Integrity monitoring

To monitor software execution for malicious changes operated by a suc-
cessful exploit, WP4 develops efficient snapshot-based integrity monitoring
techniques based on commodity hardware support. These techniques are
applicable to both source and binary programs. We specifically focus on
kernel integrity monitoring techniques, since real-world rootkits that oper-
ate persistent malicious changes to systems typically target the operating
system kernel. In the following, we present the design of the GRIM sys-
tem [50] as the leading integrity monitoring technology developed in WP4.

4.5.1 GRIM

Despite the recent advances in software security, vulnerabilities can still be
exploited if the adversary is really determined. No matter the protection
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enabled, there is always a path for successful exploitation, although admit-
tedly, today, following this path is much harder than it was in the past.
Since securing software is still under ongoing research, the community has
investigated alternative methods for protecting software. One of the most
promising is monitoring the Operating System (OS) for possible exploita-
tion. Once an abnormality is detected then the monitor should be able to
terminate the system’s operation and alert the administrator.

This form of protection is commonly offered by tools known as Kernel
Integrity Monitors (KIMs). The core operation of these tools is to inspect,
as frequently as possible, both the kernel code and data for determining if
something has been illegally modified. In principle, compromising an op-
erating system is usually carried out using a kernel rootkit (i.e., a piece of
malicious code that is installed in the OS), which usually subverts the legit-
imate operation of the system by injecting malicious functionality. For ex-
ample, the simplest way for achieving this is by inserting a new (malicious)
system call, which, obviously alters a fundamental structure in the kernel’s
code: the system-call table. In order to identify such a simple rootkit, it is
enough to only monitor the memory region where the system-call table is
mapped for possible changes.

Implementing KIMs may sound trivial, however the level of sophistica-
tion of modern kernel rootkits, gives space for many different choices. A
straightforward approach is to implement the monitor solely in software, in
the form of a hypervisor which runs and frequently introspects the OS for
possible (malicious) changes [16, 45, 91, 76]. This choice is really conve-
nient, since there is no need for installing custom hardware, nevertheless
it is implied that the monitor’s code is non vulnerable itself. Unfortunately,
it has been demonstrated that a hypervisor can be compromised by code
running at the guest OS [70]. In addition, formally verifying the monitor’s
code may need significant effort [49]. A viable alternative is to offer mon-
itors that are implemented in hardware. Copilot [65] is a representative
architecture, implemented in a PCI card and it is basically a snapshot-based
monitor. Essentially, a snapshot-based system monitors a particular memory
region to identify possible malicious changes. As an example, consider the
simple case of monitoring the region where the system-call table has been
mapped, in order to detect if a new (malicious) system call has be injected.
Copilot has a transparent operation, allowing the OS to be unaware of its
existence, and thus it stands as a very attractive option, especially in terms
of deployment. Still, modern rootkits have evolved and developed tech-
niques that can evade detection, by exploiting the window of opportunity
between two snapshots. As a matter of fact, a rootkit can simply perform a
(malicious) change right after a snapshot is taken and subsequently remove
it before the next snapshot is available.

To overcome this inherent limitation of snaphost-based detection sys-
tems, recent proposals have been focused on snooping based detection [58,
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53]. A snoop-based system monitors all the operations that are sent over the
memory bus. In the context of the aforementioned example we used, the
snoop-based detector would have achieved equivalent detection with the
snapshot-based system by capturing the write operations that aim at modi-
fying the region where the system-call table is mapped. It is evident, that the
snoop-based approach performs a lighter check, since instead of monitoring
a particular region, it monitors the bus for a particular operation. Never-
theless, snooping is possible only in custom processors, since the memory
controller is integrated to the CPU, which poses critical deployment issues.
The benefits of snoop-based systems were introduced by Vigilare [58] and
have been demonstrated in KI-Mon [53] where, in short, the authors pro-
vide experimental evidence that a snapshot-based approach can only reach
70% of detection rate, while their snoop-based system, KI-Mon, can reach
100% of detection rate.

Although we acknowledge the benefit of snoop-based systems, such as
KI-Mon, we stress that snapshot-based systems can essentially do better. We
implement GRIM, a novel snapshot-based KIM based on a GPU architecture.
Using GRIM we can easily reach 100% of detection rate using a snapshot-
based only architecture. GRIM promotes the design of a novel architecture,
which does not only demonstrate high detection rates in snapshot-based in-
tegrity monitors, but, also, provides a generic extensible platform for devel-
oping KIMs that can be instantly deployed. GRIM works transparently and
requires no modifications such as re-compilation of the kernel and installing
custom hardware on the system it protects. In addition, GRIM does not aim
at simply promoting the usage of GPUs in a new domain. To the contrary,
GRIM delivers a design that demonstrates many critical properties for KIMs.
Beyond the dramatic speed gains in detection rates, the system is easily pro-
grammable and extensible, while it is not based on custom hardware but on
commodity devices.

Contributions We make the following contributions:

1. We design and implement GRIM, a novel GPU-based kernel integrity
monitor.

2. GRIM demonstrates that snapshot-based monitors can do substantially
better than it has been so far documented in current literature [53].
We are able to reach easily 100% detection rate, surpassing substan-
tially the reported detection rate (70%) in the state of the art.

3. GRIM is fully programmable and it provides a generic extensible plat-
form for developing KIMs that can be instantly deployed using just
commodity devices. It works transparently and requires no modifica-
tions such as re-compilation of the kernel and installing custom hard-
ware on the system it protects.
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4.6 Recovery

To recover the execution in a safe state after a successful or unsuccessful
exploitation attempt—or more generically a software failure, possibly trig-
gered by a bug even during attack-free execution—WP4 develops automated
error recovery techniques based on efficient memory checkpointing. These
techniques are applicable to both source and binary programs. In the fol-
lowing, we present the design of the OSIRIS system [18] as a representative
recovery technology developed in WP4. OSIRIS focuses on supporting short
error recovery windows in the operating system.

4.6.1 OSIRIS

A decade ago, Chou et al. [84, 28] identified buggy kernel extensions as an
important cause of operating system failures for commodity operating sys-
tems such as Windows and Linux. Assuming that drivers are mostly stateless
and faults are mostly transient, we can handle such faults by isolating the
driver code and restarting it in case of a failure [44].

However, a more recent study on the Linux kernel [61] shows that faults
in stateful core OS subsystems have started to outrank the buggy drivers in
importance, even though the latter are still large in number. Furthermore,
these bugs are typically not transient [25, 40]. In other words, relying on
simple re-execution is no longer a viable solution to recover from such faults.
For this reason, we seek a method to mitigate their effects.

There are many approaches that improve error recovery in operating
systems. Typically, they protect either applications [33] or specific OS sub-
systems from the effects of software faults in the operating system [82, 83,
46, 98], but there also have been efforts to provide whole-OS error recov-
ery [59, 32, 54, 44].

Extending error recovery techniques to an entire OS is a complex prob-
lem. Most of the solutions compartmentalize the OS, primarily to prevent
the effects of faults in one component from spreading onto other compo-
nents. Moreover, compartmentalization allows components to be recovered
individually. However, stateful runtime interactions among components
make per-component recovery nontrivial. In a scheme that enforces strict
fault isolation between OS components, recovering from failures resembles
a distributed systems recovery problem. In this context, the solutions are
generally of three kinds:

1. Global replication – which is least suitable for a general-purpose op-
erating system that aims for judicious and efficient usage of system
resources;

2. Dependency tracking – which does not scale for the high-frequency
inter-component interactions found in an operating system setting;
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3. Global checkpointing – which not only hinders normal execution per-
formance, but also degrades it exponentially when we scale to a larger
number of active system components.

Global checkpointing in the context of operating systems [79] offers
strong global consistency guarantees, but suffers from the need to synchro-
nize all components, introducing bottlenecks which greatly affect overall
system performance. Since OS components interact all the time, checkpoints
should be taken at high frequencies—typically orders of magnitude beyond
what is possible with today’s global checkpointing solutions. Local, per-
component checkpointing allows for more concurrency in the system but
dependent components still have to coordinate to ensure that their locally
checkpointed state remains consistent with that of their counterparts. In
case of uncoordinated checkpoints, there is the risk of a domino effect [81],
where error recovery leads to unbounded rollback of inter-dependent com-
ponents. In general, expensive runtime dependency tracking is the price
that local checkpointing schemes pay towards guaranteeing globally consis-
tent recovery.

We introduce a new design called OSIRIS (OperatingvSystem with In-
tegrated Recovery preventing Inconsistent State)5, which seeks to strike a
new balance between performance and globally consistent recoverability of
an operating system.

Building on efficient in-memory checkpointing, OSIRIS recovers only in
cases where we can conservatively infer that performing local recovery will
not lead to global state inconsistencies. This eliminates the need for depen-
dency tracking and synchronization, also greatly simplifying the recovery
mechanism. Such solution offers better performance than any other exist-
ing scheme, at the cost of not being able to recover in every case.

Our solution is the first to achieve globally consistent recovery of stateful
core OS components with very low performance overhead. OSIRIS brings
OS recoverability (limited, but still powerful) within the reach of production
systems. Moreover, unlike many existing OS recovery approaches, we do
not limit ourselves to drivers and explicitly target the core system services.
Given their heavily stateful nature, it is much harder to recover from faults
in such components than from faults in drivers. For instance, a system call
like exec involves the file system, memory manager, cache manager, process
manager, etc. Error recovery in any of these components must keep its state
consistent with other components’ state and resume execution in a globally
consistent way.

Our approach uses knowledge about the nature of inter-component in-
teractions in the system to perform recovery only within dependency-safe
recovery windows—intervals during which state changes within a compo-
nent have not affected other components. We use a lightweight in-memory

5OSIRIS is open source, available via https://github.com/vusec/osiris
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checkpointing system [90] to allow efficient high-frequency creation of per-
component checkpoints. We further optimize this approach by disabling our
runtime (memory logging) instrumentation whenever recovery to a consis-
tent state is known to be impossible. Our design results in lower runtime
overhead and provides a fine-grained trade-off between recoverable surface
and performance. Finally, instead of replaying the execution after recover-
ing from a failure, we send an error to the component that sent the request
that triggered the failure. This allows us to deal with persistent faults in
addition to transient faults.

Contributions We make the following contributions:

1. We describe an operating system recovery method that determines
whether rolling back only component-local state can restore the OS
to a globally consistent state.

2. We show how OSIRIS occupies a meaningful new point in the design
space of recoverable operating systems by introducing a new trade-off
that solves the performance, maintenance, and complexity drawbacks
of existing solutions at the cost of reduced recovery surface.

3. We explain how our approach deals with persistent software faults in
core system services whereas most prior efforts are limited to transient
faults.

4. We minimize checkpointing instrumentation overhead by disabling
memory logging when we cannot recover, providing a fine-grained
trade-off between performance and recovery surface.

5. We show that our prototype implementation is efficient performs mean-
ingful recovery from real-world faults.

4.7 Web and mobile security and privacy

To enhance the security of the user-end applications, WP4 develops tech-
niques targeting Web Browsers, Android and iOS mobile devices and also
new novel approaches of secure communication procedures. These tech-
niques are implemented in the source code of the user-end application, or
perform analysis on the applications runtime.

4.7.1 CCSP

Trust in TLS-based communication on the Internet is provided by Certificate
Authorities in the form of signed certificates. Browsers check the valid-
ity of the certificates they receive from websites via the Online Certificate
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Status Protocol(OCSP), or via Certificate Revocation Lists(CRLs). Unfor-
tunately, sophisticated cyber-attackers who manage to act as men-in-the-
middle, may trick browsers to trust revoked certificates, believing that they
are still valid. Consequently, the browser will communicate (over TLS) with
servers controlled by cyber-attackers. Although frequently updated, nonced,
and timestamped certificates may reduce the frequency and impact of such
cyber-attacks, they impose a very large overhead to CAs and OCSP servers,
which now need to timestamp and sign on a regular basis all the responses,
for every certificate they have issued. To mitigate this overhead and provide
a solution to the described cyber-attacks, we have developed CCSP: a new
approach to provide fresh information regarding certificates’ status, which
capitalizes on a newly introduced notion called signed collections. Our pre-
liminary results suggest that CCSP

Contributions We make the following contributions:

1. Reduce space requirements by more than an order of magnitude.

2. Lower the number of signatures required by several orders of magni-
tude compared to OCSP-based methods.

3. Add only a few milliseconds of overhead in the overall user latency.

This work is accepted for publication at the IEEE International Confer-
ence on Computer Communications 2017.

4.7.2 Constant blinding in JIT engines

In this work we evaluate the security levels provided by modern JavaScript
just-in-time (JIT) engines that are integrated in web browsers, for example
SpiderMonkey (Mozilla Firefox) and Chakra (Microsoft Edge). Specifically,
it has been proven that malware authors can utilize the JIT engine to gener-
ate their own sequences of instructions, which combined with other browser
bugs can allow arbitrary code execution when the user visits the malicious
page. This is done by inserting specially crafted constant values in the JS
code of the web page. We are evaluating the effectiveness of the mitiga-
tions utilized by the latest JIT engines, as well as attempt to harden the
JIT engines by extending or introducing new countermeasures. In order
to reduce the risk of constant values that can be used to execute arbitrary
code, we develop constant blinding (or constant encoding), which random-
izes the values emitted in the code buffer during every run, thus making it
impossible for the attacker to exploit.

This work is almost finished and will be submitted to an academic con-
ference.
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4.7.3 Proxy injection detection

Internet users often place their trust on systems that are not under their
control. From a security and privacy perspective, a particularly critical
class of such systems is HTTP proxies that act as “stepping stones” between
clients and servers. By relaying their traffic through a proxy, users can ac-
cess otherwise blocked content and services due to geographical restrictions,
content filtering policies, or censorship, and to some extent preserve their
anonymity, by hiding the originating IP address from the final destination
(although still exposing it to the proxy).

Once the user traffic reaches the proxy towards its actual destination, un-
less end-to-end encryption is used, a rogue or compromised proxy can tam-
per with the transmitted content or snoop for sensitive user data [72]. Even
when end-to-end encryption is used, however, the problem is not alleviated,
as man-in-the-middle attacks are still possible using fake or even valid—
obtained through compromised CAs or generated by powerful adversaries—
certificates, or SSL-stripping attacks [56]. The potential harm due to net-
work traffic interception attacks can be severe, ranging from mere annoy-
ance and inconvenience to system compromise and theft of private informa-
tion.

The proliferation and widespread use of web proxies necessitate the
need for understanding and measuring the extent of content modification
by rogue web proxies. The ease of setting up a free online proxy (e.g., on
a cloud-hosted virtual machine) and registering it on the numerous “proxy
list” websites, raises the question of whether miscreants employ these tac-
tics to attract and gain access to user traffic, compromise user devices, or
steal private information. Sporadic evidence so far has shown that this is
indeed happening in various types of network relays, including VPN servers
and anonymity network relays [94, 66, 43, 93, 24, 11], but the extent of the
problem in the front of web proxies remains unknown.

As a step towards understanding and measuring the extent of content
modification by rogue HTTP proxies, we have conducted a large-scale study
of open HTTP proxies, focusing on the detection of content alteration or in-
jection events. We periodically collected publicly available proxies by crawl-
ing a set of “proxy list” websites, and probed them using a novel technique
based on honeysites under our control. Instead of visiting real web sites
with and without a proxy, and comparing the difference in the retrieved
content, the use of honeysites allows us to avoid any false positives issues
due to highly dynamic content (e.g., news updates, rotating ads, and time-
related information), or content localization (e.g., due to the proxy’s differ-
ent location than the client). We employed a set of honeysites of increasing
complexity and content diversity, and implemented a content modification
technique that operates at the level of a page’s DOM tree to detect even
slight object modifications.
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After successfully probing 9,412 proxies, our results indicate that 739
of them (7.85%) performed some form of malicious or unwanted content
modification. The observed alterations included the injection of extra (or
the modification of existing) ads, the inclusion of tracking libraries and fin-
gerprinting code, the collection of data from social networking services on
which the user is already authenticated, and the injection of malicious code.
Besides the injection of ads and user tracking and fingerprinting code, we
also discovered more severe and sophisticated instances of malicious behav-
ior, such as XSS attacks, SSL stripping, and redirection to servers that have
been reported to host malware.

Contributions We make the following contributions:

• We present an approach for the detection of unwanted or malicious
content modification by rogue HTTP proxies, based on the observation
of discrepancies in the retrieval of content through the probed proxies.
Our technique uses a set of decoy web sites, dubbed honeysites, which
are created with an incremental degree of complexity and external
content dependencies, to allow differentiating between different types
of content injection or alteration.

• We have performed a large-scale measurement study of open HTTP
proxies retrieved from public “proxy list” websites, and used our tech-
nique to assess the extent of malicious content modification by rogue
proxies. Our findings suggest that 7.85% of the tested proxies engaged
in some form of malicious or unwanted content modification.

This work is currently under submission to the ACM Asia Conference on
Computer and Communications Security 2017.

4.7.4 Sandboxing mobile application on the cloud

Many applications make use of the capabilities the cloud has to offer. In this
work we developed a system were applications operate at the cloud while
users interact with them through chrome remote desktop. We selected skype
as the main application being tested since it is one of the most popular mes-
saging and video calling applications and also one of the most challenging
to operate exclusively on the cloud. Furthermore for a High Definition video
calling experience between two users, many conditions must be taken into
account . The most common conditions that may influence an HD video call
is the available bandwidth, the cpu power and the available ram. Skype,
amongst other factors, can determine the bandwidth available as well as
the PC specs and drop or increase the quality of the video call accordingly.
Even if there is a strong internet connection, skype may drop the video call
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resolution, if the cpu usage reaches a certain percentage. Therefore it is
recommended to use certain webcams with the ability to encode HD video
using there own hardware, in order to avoid stressing the cpu. Our system is
based on executing skype in a remote server operating in a high speed net-
work and with sufficient computing power. Thus the main requirements for
an HD video call are off loaded from the end user to the server. If both end-
users operate Skype remotely, then the actual video call happens between
machines with enough computing power and strong internet connection.
Since the skype communication does not suffer from congestion, packet loss
or limited computing resources, the end-user has a better video calling expe-
rience. Finally, since applications are executed on the cloud, any malicious
intent(e.q buffer overflows, ROP attacks, IP denial of service, etc.) does not
affect the end user. Thus, such a system can be incorporated by cloud com-
panies in order to sandbox their applications and most important provide
privacy as a service.

This work is in progress and will be later submitted to an academic con-
ference.

4.7.5 Anti-track droid

In this work we developed an anti-tracking mechanism to enable the users
access an online service through a mobile app with- out risking their privacy.
Our evaluation shows that our approach is able to reduce the leaking identi-
fiers of apps by 27.41% on average when it imposes a practically negligible
latency of less than 1ms per request while preserves the privacy of the user.

In our work, we consider as privacy-related leaks, information, such as
(i) installed applications, (ii) known SSIDs, (iii) connected wifi, (iv) kernel
characteristics, (v) model version, (vi) carrier, etc. This device-specific infor-
mation is able to persistently track mobile users without using any deletable
cookies or resettable Advertising IDs [35]. By deploying-device fingerprint-
ing a third party can also: (i) decloak user’s anonymous sessions: by linking
for example Tor sessions of the same device with eponymous ones [14] and
(ii) link web with app sessions, one of the biggest challenges of mobile ad
networks. Surprisingly, our results show that in case of device-specific pri-
vacy leaks, there is a clear winner: mobile browsers leak significantly less
information compared to mobile apps. In all the cases we studied, mobile
apps leaked tons of information that mobile browsers did not (or could not)
leak. Web sites may provide poor functionality to mobile devices and thus,
the use of apps may seem the only reasonable choice from a user experi-
ence point of view. To improve the privacy of users who must use mobile
apps, we developed Anti-Track Droid, an anti-tracking mechanism for mo-
bile apps, tantamount to the current state-of-the-art ad- blockers of mobile
browsers. Our approach constitutes an integrated monitoring and filtering
module, which contrary to alternative approaches works solely in the users
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device without requiring any additional infrastructure (i.e. proxy or VPN).
Our evaluation shows that Anti-Track Droid is able to reduce the leaking
identifiers of apps by 27.41 , and it imposes an insignificant latency of less
than 1ms per request.

Contributions We make the following contributions:

1. We design Anti-Track Droid: a novel anti-tracking mechanism for mo-
bile devices. Similar to state-of-the-art browser ad-blockers, our ap-
proach blocks any possible request may deliver to third parties data
that can be used either for user profiling or device fingerprinting.

2. We implement our system as an integrated filtering module for An-
droid. Anti-Track Droid uses a mobile-based blacklist, which we pub-
licly release, and it does not require changes in the respective OS or
any kind of external infrastructure (i.e. proxy). We experimentally
evaluate our prototype and show that in addition to improving privacy,
it reduces the bytes transfered by an average of 8%, and it reduces la-
tency by as much as 90% for blacklisted trackers.

This work is currently under submission to the World Wide Web 2017
conference.

4.7.6 REAPER

The Android OS, with each major revision, moves forward towards a more
fine grain permission control system. With the newly Android 6 permis-
sion system, users are now able to accept or reject a permission request
at run time, as well as, revoke dangerous permissions any time through
the system settings. So far, the Android ecosystem and its applications are
dominated by third party libraries that leak personal information without
the users knowledge and concern. Even though such a permission control
system gives more power to the user, it still fails to distinguish which part
of the application is responsible for the permission request. Motivated by
the above rationale, we developed a fine grain permission access control
system, were users are fully aware about the permissions needed by the in-
tegrated third party libraries. Such a system can be adopted by Google Play,
the official Android market and inform users at installation time about the
permissions needed by the integrated third parties.

Contributions We make the following contributions:

1. Based on the necessity to identify which parts of an application require
certain permissions, we develope Reaper. Reaper is a real-time permis-
sion analysis system, based on the Xposed framework, that is capable
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to understand which part of the application, (core-functionality/3rd
party libs), is requesting access to resources being held by a specific
permission. Unlike previous static approaches, our system performs
dynamic analysis on applications, without any code modification to
either apps or the OS and reveals the permissions requested by the
third party.

2. We designed a UI automator prototype to traverse the graph of each
application based on a certain threshold. Our sophisticated prototype,
harvests only the interactive elements that are drawn at any time on
the display without the need of modifying or repackaging the Operat-
ing System and the applications.

3. We implemented Reaper as a plug and play framework for any version
of the Android OS that supports the Xposed framework and evaluated
apps from the official Android Market, Google Play.

This work is in progress and will be later submitted to an academic con-
ference.
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5
Conclusion

This deliverable described the core design specification of the SHARCS soft-
ware technologies. To develop our design, we followed a top-down ap-
proach, starting from the requirements and threat model defined in D2.1,
and detailing attack primitives, vulnerabilities, and ultimately security de-
fenses to address the threats considered by SHARCS.

Rather than focusing on narrow security defenses, WP4 advances the
state of the art with a broad portfolio of security defenses at different de-
sign layers, ranging from software verification to exploitation defenses and
beyond. This holistic approach is crucial to devise comprehensive, versatile,
generic, and multilevel solutions, which satisfy our goals of providing end-
to-end and in-depth security, and are sufficiently flexible to be applicable to
the different SHARCS applications.

Since the techniques developed by WP4 have broad applicability, they
can be mapped and used in the systems considered in WP5 in the most
flexible way. This is also important to satisfy more generic application re-
quirements (e.g., power consumption) defined in D2.1. For more details
on the integration of (a subset of) WP4 techniques for each of the SHARCS
applications and systems, we refer the reader to the WP5 deliverables.
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