SEGURITY

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

IT ALL DEPENDS

Editors: Mohamed Kaaniche, mohamed.kaaniche@laas.fr | Aad van Moorsel, aadvanmoorsel@ncl.ac.uk .

olnivenafion:
L [* 29 AV

Applications and Challenges

Angelos Oikonomopoulos, Cristiano Giuffrida, Sanjay Rawat,
and Herbert Bos | VU University Amsterdam

Softwa.re engineers have
long performed source code
rejuvenation—rewriting obsolete or
outdated programming idioms to
modern counterparts.! Taking inspi-
ration from this practice, we suggest
applying rejuvenation to the results
of the compilation process. That is,
we propose updating selected binary
files, or binary rejuvenation.

Itwon’t come as a surprise that the
rejuvenation of binary executables is
hard. Therefore, before discussing its
challenges and possible solutions, we
discuss why rejuvenation is useful.

Improved Health
for Aging Code

Programming environments and

frameworks often go to significant
lengths to identify the optimal
implementations and algorithms
for their target workload and appli-
cation. Common examples include
“smart” versions of functions, such
as memcpy, strlen, and CRC32,
or specialized versions of graphics
or cryptography algorithms. Simi-
larly, individual programmers might
import “faster” versions of platform-
supplied functionality. The Internet
is awash with posts detailing tricks
of the trade.

It's doubtful that a project can
consistently test and benchmark
a custom implementation across
its user base’s range of CPU archi-
tectures and computing platforms.

Even large frameworks for which
abundant (corporate or coopera-
tive) resources can be brought to
bear must make tradeoffs to accom-
modate a bewilderingly diverse
computing landscape.
The ever-evolving
of the relevant hardware plat-
forms exacerbates this situa-
tion. New microarchitectures,
introduced at least every sec-
ond or third year (https://www
-ssl.intel.com/content/www/us
/en/silicon-innovations/inteltick
-tock-model-general.html), = often
bring specialized instructions that
outperform software implementa-
tions of a software primitive (AES
and CRC32C being two prominent
instances). Moreover, cache sizes
vary even within the same genera-
tion of CPU cores. The optimal
implementation of a few years ago
might now be inappropriate for
modern processors or be rendered
obsolete by a hardware primitive.
Besides performance, stale
implementations might have unex-
pected security or reliability issues.
New attacks on cryptographic
operations exploit data-dependent
branches to infer key material?
Similarly, internal hash functions
that aren’t collision resistant are
an ongoing liability for software
exposed to malicious input, for
example, CVE-2011-4815, CVE-
2011-4885, and CVE-2012-1150.
Modern OS distributions address
this problem through shared librar-
ies. In this way, when the platform is

nature

68 January/February 2016 Copublished by the IEEE Comp and ility Societies 1540-7993/16/$33.00 © 2016 IEEE

SECURITY

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page A

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

-

updated, the application selects the
impiementation that’s currentiy the
best choice for a particular operation.
Some programming environments
take the extra step of dynamically
selecting the implementation at sym-
bol resolution time, accounting for
the host CPU’s microarchitecture.
Unfortunately, stale imple-
mentations still end up embedded
in production binaries. It’s com-
mon for organizations to rely on
a proprietary binary that the ven-
dor no longer updates because it
isn't economically beneficial or
because the vendor has
gone out of business.
Although static link-
ing is no longer the norm,
frameworks or appli-
cations often import a
specific external library

meant to be transparent during the
buiid process.

Needless to say, clever imple-
mentations, such as those described,
are sometimes used intentionally to
substitute the platform-supplied
versions—a decision that might
have been appropriate when the
binary was built.

The Problem

To replace one piece of machine
code with another, the code should
be relatively self-contained. With
that in mind, we need to accom-

Software engineers have long performed
source code rejuvenation. We suggest

applying rejuvenation to the results

of the compilation process.

enough if the replacement simu-
lates (in the formal sense) the origi-
nal, Other times, eliminating a fault
will be the objective of the rejuve-
nation attempt. In most cases, the
observable effects in terms of tim-
ing and asymptotic behavior will
differ, which will necessitate human
supervision because application
requirements are rarely formalized.
For example, bubblesort
and mergesort are function-
ally equivalent under virtually all
definitions of the word and are
fundamentally different in imple-
mentation. We could jus-
tify rejuvenating a binary
by replacing the former
with the latter, provided
the application could
tolerate the additional
memory consumption.

version into their own
source tree. They might
do this because the project needs
to make special modifications that
would be unacceptable to a generic
library version or, perhaps, because
the upstream project hasn’t taken
care to preserve source or binary
compatibility in its releases. When
the range of targeted platforms is
diverse enough, its often impos-
sible or impractical to rely on spe-
cific library versions being available,
so static linking of dependencies
becomes an attractive option. In
every such instance, the resulting
binary will end up with an embed-
ded copy of external code.

Finally, portability considera-
tions mightalso force a programmer
to supply a fallback implementation
of a primitive available on some,
but not all, platforms targeted by
the project. If the project must
produce a generic binary, it has no
choice but to embed its own imple-
mentation of that primitive. Even
when developers attempt to pub-
lish separate binaries for a range of
supported platforms, a function’s
fallback version might be selected
accidentally because its inclusion is

plish two tasks: identify the frag-
ment of machine code to be
replaced, and determine what
to replace it with. This problem
space has at least two dimensions:
equivalence and granularity.

For the first task, we offer a use-
ful notion of what it means for a
code fragment to be a legitimate
target for replacement. Suppose
we want to find a piece of code (in
an assembler or a high-level lan-
guage) embedded in a given binary.
‘We must not only locate and prove
this machine code’s equivalence to
our given fragment in the face of
unknown compiler transformations
but also ensure that our equivalence
definition captures runtime effects
and functional equivalence, Imple-
mentation details such as data-
dependent jumps might also matter
depending on the use case. In other
words, the first task requires a nar-
row notion of equivalence.

For the second task, we must
safely replace the identified code
with a more appropriate version.
Here, we can relax our notion
of equivalence. Often, it will be

The second dimen-
sion we're concerned
with is the granularity at which we
attempt binary rejuvenation. There
are many possibilities, from whole-
sale replacement of old library ver-
sions to replacement of individual
functions or parts of the callgraph.

Imagine rejuvenating inlined
code that's intermingled with
instructions performing unrelated
operations. (Indeed, compiler built-
ins are the exemplary instances of
manually optimized binary code.)
Replacing an inlined version of
CRC32 or a compiler-expanded or
open-coded memcpy might very
well be worthwhile. Yet it’s a daunt-
ing task given that the fragment to
be excised might consist of instruc-
tions dispersed over the control
flow graph (CFG) of a larger func-
tion spanning multiple basic blocks
and possibly participating in unre-
lated computations.

A Way Forward

A less lofty, more attainable, short-
term goal is binary rejuvenation at
the function level. Initially, we must
be able to reliably identify function
boundaries in well-formed binaries.

SECURITY

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B> Sug

I 7 ALL DEPENDS

70

Luckily, there are already promising
approaches to that probiem.’

Many of the binary rejuvena-
tion examples we've mentioned
so far (CRC32, internal hash func-
tions) are self-contained functions.
We envision a database of func-
tion implementations,
including metadata to
determine each func-
tion’s suitability for vari-
ous hardware platforms,
not unlike the way mod-
ern compilers select what

and replaced; for instance, the
libressl impiementation of
3DES consists of the callgraph
DES_encrypt3 - DES_
encrypt2 -> DES_encryptl.
We can safely replace a call to DES_
encrypt3 with a call to a com-

Precompilation could make binary
rejuvenation a valuable tool in a
deployment landscape where legacy

binary code concerns are unavoidable.

manageable. The task is embar-
rassingly parallel, and the resulting
machine code can be clustered to
reduce the number of functions we
have to search for.

However, modern compilers
offer dozens of flags that affect code
generation. Because
these flags can be turned
on and off individu-
ally, we'd run into com-
binatorial explosion if
we tried to precompute
every possible compila-

code to expand a built-
in to. For instance, if we
locate a naive byte-by-
byte version of memepy in a binary
intended to run in a newer Intel pro-
cessor, we can replace it with a ver-
sion using SSE (Streaming SIMD
Extensions) instructions. Of course,
we always prefer implementations
that improve reliability or security.
Focusing on functions also makes
the replacement procedure more
tractable. The actual replacement
of a function is straightforward: we
emit the function’s improved ver-
sion and change all calls to target
the new copy. Because the func-
tions have no externally observable
differences, remaining references to
the old copy won't affect accuracy
in programs that don't assume a
low bound for execution time of the
replaced function; they are simply
missed optimization opportunities.
That said, equivalent implementa-
tions might receive their inputs from
and produce their outputs into dif-
ferent locations (registers or mem-
ory). Fortunately, when we identify
equivalent code fragments, we can
only do so under a specified corre-
spondence of input and output loca-
tions between the two fragments,
so the information is already there.
Fragments with a variable number
of input or output locations present
an additional challenge.
Rejuvenation need not con-
strain itself to single functions. Any
part of a callgraph can be identified

IEEE Security & Privacy

pletely different implementation of
3DES, as long as we preserve the
functions’ original versions.

Directions

How then do we identify an indi-
vidual function implementation?
Following are a few approaches.

Naive comparison. One way to
determine equivalence is to look
for functions that are byte-for-
byte identical, in which case com-
parison is straightforward. The
downside is that we must account
for any differences in the object
code due to different compilers,
compiler versions, or compilation
flags. Is that a viable tradeoff? It
depends. Only a handful of com-
pilers account for the vast majority
of production binaries. The most
active compiler project will make,
at most, one minor release every
few months. That makes for a few
hundred relevant compiler ver-
sions in aggregate.

Code generation is most often
determined by optimization flags;
currently, five optimization levels
(including -Os) are widely used.
If we multiply these five levels
by the number of distinct com-
piler versions, we end up with a
few thousand. Given a C source
file, precompiling it with all afore-
mentioned combinations is quite

tion result. However, if
real-world development
uses a relatively small
number of flag combinations, this
naive approach might suffice.

Beyond naivete. There are several
ways to improve this algorithm.
For one thing, we can abstract
out differences in addresses (for
position-dependent code) by
using relocation information. For
another, we can account for dif-
ferences in the linear placement
of basic blocks, first by compar-
ing the CFG structure of the target
function to (parts of) an exist-
ing binary program and then, if
the structure matches, by doing a
bytewise comparison of the corre-
sponding basic blocks,

We could go further and lift
the machine code to some generic
intermediate representation before
comparison, thus eliminating trivial
mismatches due to different instruc-
tion selection. Along these lines, we
could normalize instruction order-
ing and the computed subexpres-
sions’ structure. Liveness analysis
and dead code elimination would
further reduce false negatives,

Compiler transformations go far
beyond these techniques. At some
point, we might use a satisfiability
modulo theory (SMT) solver to
determine two basic blocks’ equiva-
lence. Specifically, SMT solvers are
good at “solving” formulas in first-
order logic, so we can express the

January/February 2016

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

.

-

SECURITY

results of basic blocks as such for-
muias and then ask the SMT soiver
to see whether they can be satis-
fied. Even after establishing this,
wed need to ensure that the input
and output locations of every basic
block correspond consistently with
the respective mappings for the
function’s other basic blocks.

Is this kind of normalization
enough? Perhaps not. Recall that
even simple compiler transforma-
tions such as partial redundancy
elimination can change the CFG
structure. Optimizations such as
loop unrolling perform much more
aggressive CFG modifications.

Our preliminary results suggest
that for a set of representative built-
in function implementations, minor
versions of the same major GNU
Compiler Collection (GCC) release
(for example, 4.x.0 and 4.x.1) will
create additional basic blocks and
CFG edges that, approximately
one-third of the time, can't be nor-
malized away using the same opti-
mization level. This happens when
trying to recover the equivalence
relationship of machine code gen-
erated from the same C source.
Ignoring such cases, our normal-
ization approach manages to show
equivalence of the machine code
functions for four out of every five
pairs. When looking at function
pairs compiled at different opti-
mization levels or using different
major GCC versions, our ability
to recover equivalence deterio-
rates accordingly.

Shou]d we continue down the nor-
malization path? The answer isn't
immediately obvious; expert rules on
normalization are hard to develop,
and compilers keep evolving. Atsome
point, it might be worth employ-
ing approaches such as data-driven
equivalence checking—identifying
corresponding cut points between
two dissimilar CFGs and proving the
defined fragments’ equivalence.*

WWW’.CDITIEUIEEE_S!SECIJF“!

Precompilation could amplify
either approach to make binary reju-
venation a valuable tool in a deploy-
ment landscape where legacy binary
code concerns are unavoidable. m
References

1. P. Pirkelbauer, D. Dechev, and B.
Stroustrup, “Source Code Rejuve-
nation Is Not Refactoring,” Proc.
36th Conf. Current Trends in Theory
and Practice of Computer Science
(SOFSEM 10), LNCS 5901, 2010,
pp. 639-650.

2. E. Tromer, D.A. Osvik, and A.
Shamir, “Efficient Cache Attacks
on AES, and Countermeasures,”
J. Cryptology, vol. 23, no. 2, 2010,
pp. 37-71.

3. T. Bao et al, "BYTEWEIGHT:
Learning to Recognize Functions
in Binary Code,” Proc. 23rd USE-
NIX Conf. Security Symp. (SEC 14),
2014, pp. 845-860.

4. R. Sharma et al, "Data-Driven
Equivalence Checking,” Proc. 2013
ACM SIGPLAN Int'l Conf. Object
Oriented Programming Systems Lan-
guages and Applications (OOPSLA
13), 2013, pp. 391-406.

ADVERTISER INFORMATION - JANUARY/FEBRUARY 2016

Angelos Oikonomopoulos is a PhD
student in computer systems at VU
University Amsterdam. Contact
him at a.oikonomopoulos@vu.nl.

Cristiano Giuffrida is an assistant
professor of computer systems at
VU University Amsterdam. Con-
tact him at giuffrida@csvu.nl.

Sanjay Rawat is a postdoctoral
researcher in computer systems at
VU University Amsterdam. Con-

Herbert Bos is a professor of com-
puter systems at VU Univer-
sity Amsterdam. Contact him at

herbertb@cs.vu.nl.

. @securityprivacy

http://ComputingNow.computer.org.

Advertising Personnel
Debbie Sims

Advertising Coordinator
Email: dsims @ computer.org
Phone: +1 714 816 2138
Fax: +1 714 821 4010

Chris Ruoff

Sales Manager

Email: eruoff@computer.org
Phone: +1714 816 2168
Fax: +1714 821 4010

Northeast, Midwest, Europe,
Middle East:
David Schissler

Email: d.schissler@computer.org

Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes

Email: mikehughes @ computer.org

Phone: +1 805 529 6790

Advertising Sales Representatives
(display)

Central, Northwest, Southeast, Far East:
Eric Kincaid

Email: e.kincaid @computer.org

Phone: +1 214 673 3742

Fax: +1 888 886 8599

Advertising Sales
Representative

(Classified Line & Jobs Board)
Heather Buonadies

Email: h.buonadies@computer.org
Phone: 41 201 887 1703

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Sea

Issue | Next Page

71

=

—
e

"Qmaas

