
ShrinkWrap: VTable Protection without Loose Ends

Istvan Haller
Vrije Universiteit Amsterdam
i.haller@student.vu.nl

Enes Göktaş
Vrije Universiteit Amsterdam

enes.goktas@vu.nl

Elias Athanasopoulos
FORTH-ICS

elathan@ics.forth.gr

Georgios Portokalidis
Stevens Institute of

Technology
gportoka@stevens.edu

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@few.vu.nl

ABSTRACT
As VTable hijacking becomes the primary mode of ex-
ploitation against modern browsers, protecting said VTa-
bles has recently become a prime research interest. While
multiple source- and binary-based solutions for protect-
ing VTables have been proposed already, we found that
in practice they are too conservative, which allows de-
termined attackers to circumvent them. In this paper
we delve into the design of C++ VTables and match
that knowledge against the now industry standard pro-
tection scheme of VTV. We propose an end-to-end de-
sign that significantly refines VTV, to offer a provably
optimal protection scheme. As we build on top of VTV,
we preserve all of its advantages in terms of software
compatibility and overhead. Thus, our proposed design
comes “for free” for any user today. Besides the design
we propose a testing methodology, which can be used
by future developers to validate their implementations.
We evaluated our protection scheme on Google Chrome
and show that no compatibility issues were introduced,
while overhead is also unchanged compared to the base-
line of VTV.

1. INTRODUCTION
C++ is a popular, fast, object-oriented (OO) lan-

guage used to develop some of the most popular Web
browsers, including Chrome and Mozilla. Due to their
popularity, size and complexity, applications developed
in C++ are frequently targeted by attackers. Despite
advances in software security, like the introduction of
data-execution prevention [4], stack-smashing protec-
tion [9], and address-space layout randomization [16],
their exploitation is still possible. New techniques in-
volving information leaks [19] and return-oriented pro-
gramming [18] are employed to bypass protection mech-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818025

anisms and perform arbitrary code execution attacks.
One of the features of C++ applications targeted by

attackers are virtual function tables, or VTables. OO
languages support run-time method binding, i.e., de-
termining the method to be called based on the run-
time type of an object, instead of the static type of the
pointer pointing to that object. Modern compilers typ-
ically provide this functionality through VTables, which
provide an efficient way to call the correct method at
run time. Unfortunately, VTables are based on indirect
calls, which is what makes them a prominent targets for
hijacking the control flow of a program.

To prevent such control-hijacking attacks, the research
community has turned to control-flow integrity (CFI).
First conceived in 2005 [2], CFI has seen a long line of
followers and variants since [14, 22, 23]. CFI strives to
constrain the control flow of a program to its statically-
determined control-flow graph (CFG) as strictly as pos-
sible. In principle, CFI can be very effective in pre-
venting a wide-range of attacks. In recent times how-
ever, we bear witness to a cat-and-mouse game, where
each new CFI technique is immediately attacked and
bypassed. Earlier works have shown that attackers can
bypass loose CFI mechanisms [11], so follow-up works
tried to exploit source code information [14] and VTa-
bles semantics [5, 7, 13] to make CFI more fine-grained.
A very recent work has shown that the above approaches
still leave programs vulnerable and argue that unless
you correctly extract C++ semantics from source code
they will remain vulnerable in the future [17].

This paper aims to provide the final say on VTable
protection, by tightly constraining virtual function point-
ers (vfp) to the VTables corresponding to the classes
intended by the programmer—as defined by the seman-
tics of the C++ language. We begin by examining a
recent compiler-based CFI approach, namely VTV [20],
and evaluate it to determine whether its own vfp restric-
tions are accurate.1 We proceed by extending VTV to
apply even tighter restrictions to the available VTable
targets and argue that our approach is optimal. More
precisely, we aim at offering the best protection possible
to vfps in a context insensitive fashion. We build our
solution into VTV and evaluate it by means of a new

1VTV is now a standard compiler option also used in
production systems.

http://dx.doi.org/10.1145/2818000.2818025

framework for testing it. Using the framework, we ex-
perimentally show that it is the strictest access policy
possible for VTables without breaking legitimate code.
Last but not least, our solution is faster than the origi-
nal VTV implementation.

Our investigation exposes three weaknesses of exist-
ing schemes. First, we find that existing solutions fail
to precisely identify the object types associated with
a virtual call-site, even in the presence of source code.
Second, we find that even state-of-the-art solutions, like
VTV, handle multiple inheritance over-permissively. Nor-
mally, every class has its own VTable and base classes
contain all the VTables of their subclasses. When a
class C inherits from multiple classes, VTV extends the
VTables of its base classes to include, and thus share, all
entries in their individual VTables. I.e., “sibling” classes
share VTable entries. This is another example where
control-flow integrity is loosely enforced. Finally, we
identify a fundamental error in the assumptions made
by other solutions. Previous approaches operate on the
premise that allowable control-flow transfers at call-sites
(i.e., where a method of an object is invoked) can be de-
termined solely based on the type of the object pointer
involved. We show that this assumption is false and
more information must be extracted from the call-site
to reach optimal protection.

We use our observations to design a new VTable-
protection scheme that uses information available dur-
ing compilation to extract the most restrictive set of
VTables that should accessible at a virtual call-site within
the code. We implement this enhanced, fine-grained de-
sign on top of VTV and evaluate it by creating a testing
framework that exhaustively explores all possible com-
binations of class inheritance and method invocation to
demonstrate that our technique provides the best possi-
ble defense for VTables. We also experimentally test
our approach by compiling and running the Chrome
Browser to demonstrate that our modifications do not
break complex, real-life applications. The evaluation of
our prototype also shows that our scheme is faster than
the original VTV scheme.

We summarize our contributions below:

• We identify limitations in the design and imple-
mentation of current VTable protection schemes,
including the primary industrial implementation,
VTV. (Section 2.2)

• We identify key design decisions that should be
accounted for, when dealing with VTable protec-
tion. This also includes a definition of optimal
(minimal) VTables sets that should be accesible
at each point in the program. (Section 3)

• We develop a practical testing methodology to eval-
uate VTable protection schemes and to highlight
potential limitations.(Section 5.1)

• We implement a prototype of the proposed pro-
tection scheme and evaluate it on a large, com-

plex real-world application, the Chrome, browser,
in terms of security and speed. (Section 5.2)

2. VTABLE PROTECTION TODAY
In this section, we discuss VTables and their protec-

tion in current solution, as well as the reasons why such
defenses are not as tight as they should be.

2.1 C++ dynamic dispatching
Function polymorphism in object oriented languages

like C++ needs a way to dynamically resolve the appro-
priate method implementation based on the dynamic
type of the object. For instance, if B and C are sub-
classes of A, and both implement a method f(), we can
initialize any reference to A with an object of either type
B or C. However, when we now call the method f(),
we execute either B.f() or C.f(), depending on the dy-
namic type. The typical solution to this problem is to
group all methods of a particular class into a table of
function pointers, called VTable in C++. Subclasses ex-
tend the VTable of their base class with new entries for
newly defined methods, while previously defined meth-
ods feature updated function pointer entries. During
object construction, a pointer towards the appropriate
VTable is stored within the object. This object, to-
gether with the VTable it points to, allows the compiler
to select the appropriate polymorphic method variant,
irrespective of the compile-time type.

C++ also features complex inheritance strategies, such
as multiple and virtual inheritance, that affect VTable
usage. For example, assume that class B simultaneously
inherits from multiple base classes A1, A2, ..., An. The
VTable of B can only extend the VTable of the pri-
mary base class for B. Otherwise entries in the VTable
would have to overlap on the same offset. To allow us-
ing the class B in place of all of its parents, secondary
VTables are associated with it, corresponding to each
non-primary base. These secondary VTables are also
inherited in all of the subclasses of B. Virtual inheri-
tance is a necessary side-effect of supporting multiple
inheritance. The latter allows the same base class to be
inherited multiple times via different inheritance chains.
This is potentially undesirable behavior. Virtual inheri-
tance solves the problem, by ensuring that a given base
class is inherited a single time in any further subclasses.
Virtually inherited base classes also trigger the gener-
ation of their own secondary VTables to be used when
accessing methods from this particular base. For more
details about VTable interaction with inheritance, the
reader can refer to the C++ ABI documentation [1].

While each compiler generates its own code for sup-
porting VTables, a common approach is to store at the
beginning of an allocated object a pointer to the ob-
ject’s VTable. Normally, VTables themselves are stored
in read-only memory to prevent tampering by attackers.
However, C++ objects can be allocated on the stack
and the heap, which are both writable. Therefore, the
pointer that points to the VTable can be overwritten
by leveraging a software bug (like a buffer overflows or
user-after-free bug [3]), for instance to make it point to
VTable-like data the attacker controls.

2.2 VTable integrity and limitations
It is evident that protecting VTable pointers will make

software exploitation dramatically harder. As a result,
recent security conferences abound with publications
on how to protect VTables. Although all these pro-
posals apply some notion of CFI, some are VTable-
agnostic [22, 23], while others target VTables specifi-
cally [5, 7, 13, 20]. In the following we focus on the
second category, as their understanding of VTable se-
mantics allows the protection to be more refined than
generic approaches.

Since all recent VTable protection schemes [5,7,13,20]
share a similar architecture, we map them onto the fol-
lowing model to analyze their strengths and weaknesses.

1. Statically search for VTable based call-sites.

2. Statically generate VTable sets that could be as-
sociated with each class/call-site.

3. Statically identify the class type used at each call-
site.

4. Enforce that run-time VTables are part of the stat-
ically inferred set at each call-site.

In short, each protection scheme aims to associate
a set of valid VTables to each particular call-site. By
enforcing that the run-time VTable belongs to the stat-
ically generated set, it aims to limit the influence of the
attacker on the control-flow. The sets should contain all
possible VTables that could be used at the given call-
site. In order to avoid having a new set for every call-site
in the program, the sets are typically grouped together,
based on type information. The intuition is that call-
sites with the same static object type have access to the
same VTables.

Recent binary- and source-based solutions have been
successful at solving the first and fourth points in this
model, and we do not cover them much in this paper.
Instead, we focus on the second and third points, where
we identified limitations in all existing solutions.

2.2.1 Generating VTable sets
VTable sets contain all VTables that a particular call-

site can legitimately target. The best way to generate
them is through analyzing the class hierarchy, since it
defines how valid C++ code interacts with VTables.

Binary level Current binary based approaches are
limited by the information that they can extract for
a particular call-site. Since type information is un-
available in closed-source programs, binary protection
schemes cannot differentiate between the legitimate tar-
gets for different call-sites. As a result, they typically
use a single VTable set that contains all VTables ac-
cumulated from the binary. While this stops many ex-
isting exploits, attackers are still able to corrupt the
program flow. For example, a call-site calling a virtual
method of 0 arguments can be used to call into a method
with 3 arguments. Attackers can exploit this pattern to
perform stack pivoting on Windows based systems as
shown by Göktaş et al. [11]. Prakash et al. [5] try to
extract limited semantics from the call-site to support

more specialized VTable sets. However, the authors ad-
mit that even their advanced policies lead to VTable sets
being larger by a factor of 2X, compared to the existing
source-based VTable protection in GCC.

Source level VTV [20] takes a class-based approach
for generating the sets. It associates a VTable set with
each class which includes all its VTables and the VTa-
bles of its subclasses. This is intuitive, as all subclasses
can be used at the call-sites of their base classes. SafeDis-
patch [13] provides two alternatives for generated VTa-
bles: (a) the VTV scheme, and (b) method-based VTable
sets. In case of the latter each virtual method is asso-
ciated with a VTable set of its own, based on method
overloading in the subclasses. Although this alternative
reduces the run-time overhead, according to the authors
it is weaker or equivalent to the VTV approach and we
will not focus on it in the remainder of this paper.

While VTV’s solution of adding all VTables of sub-
classes to the set is intuitive at first glance, it fails to
arrive at the right set in case of multiple inheritance. In
this case,classes inherit completely unrelated function-
alities using multiple unrelated VTables. Code at the
call-site assumes that the appropriate casting mecha-
nisms have been applied to select the desired VTable of
the object before making the call. However, VTV allows
attackers to inject a different (and mismatching) VTable
of the same class at the call-site, undermining its seman-
tics. We present the security impact of this limitation
on the Chrome browser in Section 5.2.2 (with callsites
erroneously giving access to thousands of VTables).

In this paper we propose an in-depth analysis of class
hierarchies and VTable generation policies. Based on
the analysis, we then propose a VTable set generation
policy, which does not suffer from false positives and
still supports all valid C++ semantics (Section 3.2).

2.2.2 Call-site type inference
While this step is typically left as an implementation

detail in previous papers [5, 7, 13, 20], we believe that
it should be an integral part of the design and eval-
uation of VTable protection. Since type inference is
the key for associating call-sites with particular VTable
sets, this component has a direct influence on the num-
ber of allowable VTables. Even if the VTable sets are
generated to be optimal, it is enough to associate the
wrong (overly conservative) set at a particular call-site
to increase the attack surface. For example, imagine
a class hierarchy, similar to Java with a common root
class Object. Since all other classes are based on Ob-

ject, conservatively associating a call-site with the root
class allows an attacker to use of all VTables within the
system, which can lead to a significant and undesirable
attack surface increase.

Since type inference is still very difficult to perform
at the level of binaries, most binary solutions forego
call-site type inference entirely and limit themselves to
a single VTable set that they associate with each call-
site. As mentioned before, doing so allows attackers to
leverage all VTables within the system at every virtual
call-site, which might be enough for future exploits.

We expected source based solutions to have solved

the problem of type inference completely, as they have
access to the underlying code, but this turned out to be
wrong. For instance, VTV [20] turns out to be overly
conservative in this stage, and as a result not nearly as
effective in validating VTable pointers as it could be.
Specifically, we observed that, in the case of multiple
and virtual inheritance, the type inference scheme in
VTV is prone to associate call-sites with base classes of
the type specified in the source. We discuss the problem
of precise call-site type inference in detail and provide
a compiler-agnostic solution in Section 3.1.

3. SHRINKWRAPPING THE VTABLES

3.1 Precise call-site type inference
As precise VTable protection relies on associating the

appropriate VTable set with each call-site, call-site type
inference is crucial. If type inference is too conserva-
tive, the call-site might be associated with a super-class
instead, allowing the use of VTables with no relation-
ship to the given call-site. We found that VTV [20],
currently the state-of-the-art in VTable protection, suf-
fers from overly conservative type inference and later in
Section 5.2.2, we highlight the impact of VTV’s conser-
vative nature when protecting call-sites in complex pro-
grams like Google Chrome. In the following we analyze
the root cause of type inference issues within GCC. We
also map our observations to other compiler frameworks
to suggest a generic design for future VTable protection
implementations.

The source of the conservativeness stems from the fact
that the core of a typical C/C++ compiler is built to
handle a wide range of language front-ends, and thus
oblivious to language specific features, such as C++
VTables. It is the responsibility of the C++ front-end
to transform VTable-based method calls into traditional
calls. This process involves implicitly casting the object
to its base class which explicitly implements the desired
method. When performing instrumentation within the
core of the compiler, this pattern is impossible to sepa-
rate from explicit casts and field accesses. For example,
in Figure 1 a call-site using a pointer of type C access-
ing a virtual method inherited from B will be associated
with type B or even A2 due to a bug in the VTV im-
plementation. This inherently enables access to a larger
number of VTables than desired by the programmer.
We discovered these issues, while analyzing the code in
GCC, but the problem applies to most compiler frame-
works. For example, the core of Clang uses the language
agnostic LLVM intermediate representation, which also
lacks type information for virtual method call-sites as
mentioned by Jang et. al. [13]. Likewise, the Microsoft
compiler also uses separate language-specific front-ends
C1 (C) and C1XX (C++) to parse the code and trans-
form it into an intermediate representation processed
by the C2 back-end, and while compiler internals are
not known, it seems likely that it loses virtual method
semantics at the level of the back-end as a result of nor-
malization with raw C code. With this analysis we hope
to draw attention to the issue of type inference in C++,
so that future VTable defenses (regardless of the tar-

A1 A2 A3

B

C

B A3

C B A3

A1 A2 A3

Figure 1: Example class hierarchy. The classes
are represented by circles. The solid arrows
show parent relationships between classes, the
thicker ones signaling the primary parent. The
VTables of each class are represented by the
rectangles next to it. The dashed arrows signal
the class from which a particular VTable was in-
herited. The text in each rectangle is the type
associated with the corresponding VTable, based
on the inheritance.

geted compiler) will use precise call-site type inference.
As a baseline solution, we propose using the earliest

possible stage within the C++ front-end and parser to
perform type inference, and propagate the information
to the instrumentation code via internal compiler anno-
tations. This allows the instrumentation to reside either
in the front-end or the core of the compiler, without af-
fecting the precision of type inference. In our setup we
annotate the access to the VTable pointer itself (as it is
generated in the front-end) and transform the annota-
tion into a VTable check at instrumentation time. It is
even possible to include further analysis in the compiler
to infer a more restricitive type to associate with the
call-site based the static pointer-tracking, but we leave
this up for future work.

3.2 Legitimate VTable targets
As described in Section 2.2, VTV [20] uses a coarse

definition of allowable VTable sets for each call-site. If
class B is a sub-class of A, then all virtual call-sites using
the latter type are allowed to use any of the VTables
found within B. However, Section 2.1 showed that mul-
tiple and virtual inheritance can result in classes having
a large range of VTables. In this case some of the VTa-
bles in class B are not inherited from A, and should thus
be inaccessible at a call-site using type A. In Section 5,
we show that VTV inadvertently allows some call sites
in the Chrome browser access to thousands of VTables.
We introduce a pair of concepts to model the relation-
ships between VTables: the type of a VTable and the
parent relationship between a pair of VTables. They
form the basis for generating provably optimal VTable
sets for each call-site.

Concepts. First, we define the type of a VTable to be
the base class of the object responsible for triggering
the generation of this particular VTable. For example,
the primary VTable of a class has the same type as
the class. In the case of multiple inheritance, every sec-
ondary base (including inherited ones) generates its own
VTable, with the given class as its type. An example of
the type association is presented in Figure 1. Second,
we define a parent relationship between VTables of dif-
ferent classes.

B A3

C B A3

A1 A2 A3

Figure 2: Visualization of the parent relation-
ship of VTables for the class hierarchy from Fig-
ure 1. This figure leaves out the classes, pre-
serving only the VTables. The dashed arrows
represent the parent relationship between two
VTables. The VTable in A2 is a parent for both
VTables of type B, since A2 is the primary parent
of B, and the primary VTables of the latter is an
extension of the VTable inherited from A2. The
same between the VTable of type C and A1.

A VTable X in class A is a parent of VTable Y from
class B if and only if:

• A==B or class A is a base class of class B.

• VTable Y is inherited from class A.

• VTable Y matches or extends VTable X.

Analogously VTable Y is a descendant of VTable X if
VTable X is a parent of VTable Y.

VTable extension is defined in C++ as generating a
new VTable that starts out with the same layout as
the original one, but with additional entries appended.
VTable extension allows efficient type-casting without
the need of generating additional VTables. An extended
VTable can always be used in place of the original, as
the relevant part matches in layout.

To identify when a VTable extends another, we take
a look at inheritance rules for both multiple and virtual
inheritance. The primary VTable of a class always ex-
tends the primary VTable of its first non-virtual base
class. Extension continues transitively as long as non-
virtual inheritance is involved. The example in Figure 2
shows the parent relationships between the VTables in-
troduced in Figure 1. Because class A2 is the primary
base class of B, its VTable is extended as the primary
VTable of B, leading to a parent relationship between
the two VTables.

In case of virtual inheritance things get more compli-
cated. Virtual base classes are only inherited once in
sub-classes. As a result the VTable of this base is only
extended a single time, even in the face of diamond in-
heritance as presented in Figure 3. While the VTables
of both B1 and B2 extend the VTable of A, this prop-
erty is not transitively propagated into the sub-class C,
only the primary VTable of C extends the one inherited
from A. In the second VTable of class C the entries cor-
responding to A are eliminated from the VTable. As a
result, in the face of virtual inheritance, explicit analysis
of the VTable content is necessary to identify extension
between two VTables.

Usage. Based on this definition of the parent relation-
ship, it is intuitive that only descendant VTables can be
used in place of their parents at any particular virtual

C B2

B1 B2

A

B1

A

C

B2

Figure 3: Example of diamond virtual-
inheritance, where by courtesy of the virtual in-
heritance only a single copy of the top class (A)
is inherited within C. While the primary VTable
of class B2 does include all entries correspond-
ing to parent A, when this VTable is inherited
into C, the entries are cleared out. Irrelevant of
the type-casting chain used to convert an object
of type C into type A, the primary VTable of C

will always be used to access the corresponding
methods. The parent relationship follows this
semantic, since only one of the VTables within
class C has the primary VTable of A as its parent.

method call-site. The layouts of the descendants always
match the layout expected at the call-site, resulting in a
successful method invocation. Any VTable which is not
a descendant should not be allowed at the call-site, as
it was either inherited from a different, unrelated base
class, or its layout does not match the expectations at
the call-site. These properties make the parent relation-
ship the perfect basis for generating allowable VTable
sets, based on C++ class semantics.

4. STRONGER VTABLE PROTECTION
We introduce stronger VTable protection through (i) a

simple extension to VTV, and (ii) an optimal solution.

4.1 An extension to VTV
As a first step toward better security, we use the con-

cepts presented above to redefine the restrictions en-
forced by VTV [20] and increase the strictness of its pro-
tection. The existing implementation traverses the class
hierarchy at compile-time to identify targeted VTable
sets for each class within the system. We extend this
mechanism by a set of additional restrictions to limit
the contents of this set further, while maintaining full
compatibility with all C++ semantics.

We propose the following simple policy for VTable
sets at a call-site corresponding to a particular class:

• All VTables of the class are part of the set.

• All descendant VTables of the above are also part
of the set.

This policy ensures that VTables in the sub-classes, with
no relation to the given class, are never added to the set.

Implementing the policy is straightforward, only re-
quiring information about VTable type and parent rela-
tionships. These are extracted from the class hierarchy,
based on their definition from above. As with the call-
site type inference, we believe that the proper testing
methodology would have highlighted the limitations of
the existing design earlier in the development process.

4.2 Optimal VTable protection
While the previous solution is intuitively strong, it

is limited by a core design decision, common to both
VTV [20] and SafeDispatch [13]. Both these papers as-
sume that VTable-level protection is based on a sin-
gle piece of type information, particular to the call-site.
In contrast, when a call is performed using a virtual
method, the compiler knows two things: the type of the
object on which the method is called, and the particular
VTable of this object, where the method can be found
(represented by the type of the VTable for example).
When limiting the protection scheme to a single type
being associated with the call-site, information is inad-
vertently lost, degrading the precision of the protection.
We propose leveraging both pieces of information, which
enables a fine-grained and provably optimal VTable pro-
tection scheme. The new design is defined as follows:

• Each call-site is represented using a class-type and
VTable pair.

• The set is initialized with only the call-site VTable.

• All descendant VTables of the above are also added
to the set.

This scheme is optimal, since the VTable sets only in-
clude the entries mandated by the C++ semantics. This
is guaranteed by the definition of the parent relationship
from Section 3.2. Every entry from in the set can po-
tentially be used at the call-site, via a valid type-casting
chain. Figure 4 shows a comparison between the origi-
nal VTV, the extension we presented in Section 4.1 and
our new fine-grained solution (see Section 5 for a quan-
titative analysis).

Implementation-wise this new scheme can also be added
on top of VTV, while preserving much of the core code
intact. Call-site type inference needs to be extended to
also provide information about the VTable in use, while
the VTable sets are also kept track of with finer gran-
ularity. The end result is a slight increase in the code
size to support the newly defined additional VTable sets.
Notice that this policy results in smaller individual set
sizes, which leads to a reduction in run-time overhead.

Besides being an optimal VTable protection policy,
fine-grained verification also has the advantage of offer-
ing guaranteed protection for VTable-based call-sites.
In the case of VTV, it is still possible to call functions
unrelated to the current call-sites, or to use VTable off-
sets that overflow the VTable in use (as highlighted in
Section 5.2). Fine-grained protection guarantees by de-
sign, that the selected offset is always valid within all
accessible VTables (since the layouts match). Further-
more, the function pointer at the offset always refers to
the method specified in the source code or one of its
overloaded variants. This means that attackers are un-
able to take advantage of mismatches in function proto-
types or argument usage to further corrupt the program
flow. All potential targets are also theoretically valid at
the particular call-site, thus it is the responsibility of
the programmer to design the methods with compati-
ble semantics. While this does not stop all exploitation
attempts against the program, it does eliminate the use

B A3

C B A3

A1 A2 A3

B A3

C B A3

A1 A2 A3

B A3

C B A3

A1 A2 A3

B A3

C B A3

A1 A2 A3

B A3

C B A3

A1 A2 A3

B A3

C B A3

A1 A2 A3

VTV Extended VTV Fine-grained

VTV Extended VTV Fine-grained

A3 *a3; ...; a3->f_A3();

B *b; ...; b->f_A3();

Figure 4: Example of VTable sets for two par-
ticular call-sites. The class hierarchy is reused
from Figure 1. Each class defines a function
f className, while it does not overload any of its
parents. The red circles are used to highlight the
VTables added to the set accessible at the par-
ticular call-site for each protection scheme. The
top row shows the VTables sets associated with a
call-site of type A3 using method f A3. In case of
the original VTV all VTables of all descendants
of A3 are added to the set, including VTables
inherited from A1 and A2. The extended VTV
ensures that only the VTables generated due to
A3 are part of the set. For this call-site there
is no difference between the extended and the
fine-grained versions. The second call-site in-
volves the type B, but the same method f A3.
The original VTV shows the same problem as
before, but in this instance even the extended
version is not optimal. Since the call-site cannot
differentiate between the two VTables of B, both
of them and their descendants need to be added
to the set. By using the fine-grained approach,
we identify that the call-site leverages the sec-
ond VTable of B specifically. Thus we only add
this particular VTable its descendant to the set.

of VTable-based call-sites as control-flow hijacking tar-
gets. Since these represent 90% of all indirect call-sites
in modern C++ programs [20] the vulnerability sur-
face is reduced significantly, while maintaining overhead
low enough to be acceptable by software development
companies. We believe that other vulnerability vectors
should also be protected using similar defenses focusing
on the underlying semantics, instead of generic, coarse-
grained protection mechanisms.

5. EVALUATION

5.1 Microbenchmark evaluating correctness
The complexities of VTable inheritance policies within

C++ make it difficult to guarantee a correct implemen-
tation using only a simple intuitive design. Thus we pro-
pose using a custom-designed microbenchmark to prove
correctness in both the proposed and future VTable pro-
tection mechanisms. The point of the microbenchmark
is to cover all inheritance scenarios as well as call-sites to

ensure that the VTable protection implementation does
not break valid C++ semantics, while also not including
unneeded VTables in the corresponding sets.

We design the microbenchmark to cover all valid class
hierarchies, including combinations of multiple and vir-
tual inheritance. Since class hierarchies can have infinite
size in theory and the possible number of class inheri-
tance combinations increases exponentially, we define
some practical limits to the class hierarchies we gener-
ate. The first limit is the maximum number of classes
included in the hierarchy. The second option is the
maximum number of base classes. Given these limits
we generate every possible class hierarchy and include
it in a source file of its own. These files make up the
microbenchmark for evaluating the correctness and pre-
cision of VTable protection.

In order to trigger the use of all potential VTables,
we create objects corresponding to each class and cast
these objects to all possible valid dynamic casting tar-
gets. Finally we introduce VTable based call-sites for
each of the cast results. The benchmark is evaluated
along 3 axes: (i) precision of call-site type inference, (ii)
correct execution with respect to C++ semantics, and
(iii) optimality of VTable set content.

The call-site type inference is validated by statically
analyzing the binary generated for each set. All VTable
verification calls within a testing function corresponding
to class X should only use VTable sets associated with
X. This is defined by the program logic, which specifies
that the argument points to a valid object of type X. Any
outliers to this rule raises an error in the benchmark to
signal that type inference is overly conservative. Correct
execution is checked by running all binaries and moni-
toring that VTable verification does not raise errors for
any combination of run-time object and call-site.

While previous papers considered enough the binaries
to execute successfully, with ShrinkWrap we aim for op-
timal VTable sets. Thus we also evaluate if none of the
VTable sets include unused entries. By construction,
the microbenchmark covers all combinations of objects
and call-sites that may occur within valid and semanti-
cally correct C++ code. This property of completeness
allows us to identify unused entries in the VTable sets
correctly and to report them. A VTable protection is
only considered correct and optimal if it is capable of
running the benchmark successfully, while reporting no
unused entries in its VTable sets.

The existing implementation of VTV [20] in GCC
4.9.2 fails the microbenchmark both in terms of call-site
type inference, as well as the optimality of the VTable
sets. Our proposed redesign of call-site type inference
fixes the first problem, but only fine-grained VTable
set generation is capable of passing all three aspects of
our benchmark. This means that our proposed solution
not only supports full C++ semantics, but it is opti-
mal in terms of the VTable set contents. We found
the benchmark incredibly valuable during the imple-
mentation process to identify corner-cases within the
C++ standard. We have observed several instances,
where Google Chrome would execute correctly with a
particular implementation variant, while the benchmark

would fail. As a result of our experiences, we highly rec-
ommend that all future research on VTable protection
leverages this benchmark or a similar one. This will en-
sure that theoretical solutions are backed up by a correct
implementation making the solutions sound in face of a
determined attacker. To facilitate this aspect, we will
make our micro-benchmark public as open-source code.

5.2 Chrome

5.2.1 Building Chrome with VTable protection
While building Chrome with precise call-site type in-

ference, we noticed that VTable verification fails in a
single place within the Skia library for the Chrome ver-
sion we wanted to test. The particular fragment of code
was eliminated in a later version, using the patch with
identifier 76f5cc6e9e87ff247c3ef1f4b3fb03668db06e2e, as
it was deemed unnecessary and restricting the class hi-
erarchy. For the evaluation we changed two lines of code
to eliminate the artifact without affecting run-time be-
haviour. The code itself is a classic case of bening type
confusion, where a base class is statically casted into
one of it’s sub-classes, when it truly is just an object
of the base class. The code does not crash with cur-
rent compilers as the layout of the objects stays identi-
cal from a VTable perspective, since the sub-class does
not implement any new methods. The cast operation is
still invalid considering high-level C++ semantics and
should be avoided in clean code.

We compiled the Chrome browser (version 42.0.2305.0,
64 bit) without VTable protection, with the original
VTV and with the proposed enhancements deployed in
multiple stages. This resulted in the following variants
used throughout the evaluation:

• Original: VTV as it is implemented in GCC 4.9.2.

• Call-site: Applying precise call-site type inference
to “Original” (described in 3.1).

• Extended: The proposed extension to VTV filter-
ing on top of “Call-site” (described in 4.1).

• Fine-grained: The proposed fine-grained filtering
scheme on top of “Call-site” (described in 4.2).

We plan to release all of these variants as patches
to GCC 4.9.2, which will hopefully help developers to
swiftly integrate the changes into the main development
tree. Having the code as open-source will also allow
other researchers to scrutinize our work in the future.

5.2.2 Security evaluation
The security evaluation of the original VTV and the

different proposed enhancements is performed along two
axes. The first is the size of the VTable sets allowed at
each of the virtual call-sites within the program. The
lower this number is, the smaller the control an attacker
can exhibit when corrupting a VTable pointer. This
simple metric for both source- and binary-based solu-
tions, allows for easy comparisons against existing and
future systems. For example, Prakash et. al. [5] also
use this metric to evaluate their solution, vfGuard. The
main issue with this metric is the lack of a proper base-
line, since C++ semantics require that virtual call-sites

 0

 0.05

 0.1

 0.15

 0.2

 1 10 100 1000 10000

C
C

D
F

Accessible VTables

Original
Callsite

Extended
Finegrained

Figure 5: Complementary cumulative distribu-
tion function between the number of call-sites
and the number of VTables they allow. The X-
axis represents the number of VTables allowed
at a call-site. The Y-axis represents the number
of call-sites that use more than the given number
of VTables.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000

C
C

D
F

Targets: functions with different signatures

Original VTV
Callsite VTV

Extended VTV

Figure 6: Complementary cumulative distribu-
tion function between the number of call-sites
and the number of methods (by name) they can
target. The X-axis represents the number of
methods (by name) that a call-site can target.
The Y-axis represents the number of call-sites
that use more than the given number of meth-
ods (by name).

allow a set of VTables based on the class hierarchy. To
the best of our knowledge, ShrinkWrap is the first work
to extract these sets precisely from the source code.

In an attempt to provide an alternative baseline, we
propose a second metric focused on functional seman-
tics instead of raw VTables. At each virtual call-site
we analyze the set of methods accessible via the set
of VTables allowed within the protection scheme. In-
stead of counting the addresses, we count the number
of unique method names that we encounter at each vir-
tual call-site. Destructors are all counted as a single
method name. A method name encompasses a group of
polymorphic methods with compatible semantics. The
intuition is that within the source every virtual call-
site is specific to a given method name as specified by
the developer. Precise VTable protection scheme is ex-
pected to enforce this property, otherwise an attacker
can gain significant leverage, by diverting the control-
flow to an unexpected method body, different from the
one specified in the source code. This mechanism has
been used [11,12] for establishing the initial control over

SetRemoteSSRCType (int , webrtc : : StreamType ,
unsigned int)

SetFECStatus (int , bool , unsigned char , unsigned
char)

Reg i s te rObserver (int , webrtc : :
ViECaptureObserver&)

StartRender (int)
Dereg i sterEncoderObserver (int)
LastError ()
ReceivedBWEPacket (int , long , unsigned long ,

webrtc : : RTPHeaderconst&)

Figure 7: List of methods that an attacker can
target at a particular call-site within Chrome.
Even with the Original VTV enabled, the at-
tacker can redirect execution to any of these 7
families of methods.

the return address, thus we consider it a serious threat
to security.

The analysis corresponding to these two metrics are
depicted in Figure 5 and Figure 6. One key observation
is that around 2.5% of call-sites allow access to > 2500
VTables (> 7.5% of all VTables in Chrome). While
the percentages are not impressive at first sight, one
has to take into account the size of the Chrome binary
(without VTV) used for these evaluations being 115MB
in size after symbols are removed. This number suggests
that an attack similar to the one presented by Schuster
et. al. [17] might still be viable in the presence of VTV.
The latter showed that main-loop gadgets were found
in binaries as small as 1MB in size, which is smaller
than 2.5% of the Chrome binary that we observe as
being highly dangerous. The paper also claims that the
other gadgets were successfully found within binaries
smaller than 20MB. In the case of VTV, 7.5% of Chrome
corresponds to somewhat less code, but still within the
same magnitude. These results suggest that VTV can
be susceptible to the attack or a future variant of it.

Another point of concern is the large number of poly-
morphic method families accessible at each call-site, when
using the existing implementation of VTV. More than
17% of call-sites allows attackers to target at least 10
different method families. In Figure 7 we present a con-
crete example to show the wide range of semantics acces-
sible to an attacker at one such call-site. Some call-sites
go as far as to allow access to more than 300 different
method families, which is a significant attack surface,
with potential to be exploited by resourceful adversaries.
Figure 8 highlights an example of a class hierarchy, in-
spired by complex C++ projects, where an attacker can
change the call-site’s semantics for performing undesir-
able functionalities while original VTV is in place.

Precise call-site type inference has a significant im-
pact on both metric, reducing the average number of
VTables and methods accessible at call-sites, however
it still suffers from corner-cases that could potentially
become vulnerable in the future, e.g. around 6% of call-
sites still allow access to 10 different method families or
more. The Extended variant comes close to achieving
the desired strictness according the method count met-
ric, but it comes short in a small set of corner-cases.

// Compile with GCC 4.9.2 VTV enable
// g ++ - fvtable - verify = std - mpreferred - stack -

boundary =2 - m32
#include <uni s td . h>
#include <s t d l i b . h>
struct RefCounted {

virtual void addRef () {}
virtual void de lRef () {} } ;

struct Logged {
virtual void l og () {} } ;

struct ProcessWrapper : virtual Logged ,
virtual RefCounted {

virtual void run (char ∗path) {
exec lp (path , path , NULL) ;

} } ;
int main (int argc , char ∗∗ argv) {

// -- Original Object Pointer --
RefCounted ∗ptr = new RefCounted () ;
// -- Memory Corruption --
ptr = (RefCounted ∗) (void∗) (new

ProcessWrapper ()) ;
a sm (”push %0\n” : : ”r ”(” l s ”)) ;

// -- Hijacked Call - Site --
ptr−>de lRef () ; }

Figure 8: Proof-of-concept attack against VTV.
An attacker corrupts an object pointer on the
stack, changing its target to a subclass. The
call-site for delRef will use the wrong VTable
from within ProcessWrapper, since the appropri-
ate up-casting is missing during the corruption.
The call-site will redirect to the run method,
taking the last stack entry as its argument (the
string ”ls” set up by the attacker).

 0

 5

 10

 15

 20

BALLS

OCTANE

SUNSPIDER

HTML5

LINELAYOUT

KRAKEN

DROMAEO

R
u
n
ti
m

e
 O

v
e
rh

e
a
d
 (

%
) ORIG-VTV

CS-VTV
EXT-VTV
FG-VTV

Figure 9: Performance evaluation of the pro-
posed scheme. The overhead imposed by the
proposed fine-grained VTable protection com-
pared to the original VTV.

Fine-grained VTV is not shown in Figure 6 as all call-
sites restrict access to a single method family, as desired
when deploying strict VTable protection. The average
VTable set size is also reduced to 27 compared to the
average of 146 with the original VTV. This result is key
to point out for binary-based VTable protection schemes
that currently compare against VTV as a reference so-
lution (such as [5]).

5.2.3 Performance overhead
Besides the security evaluation, it is also important

to ensure that the proposed enhancements do not affect
the low overhead offered by the original VTV imple-
mentation [20]. We evaluate the overhead imposed by
the different variants using the Chrome browser. Our
testbed is an HP Z230 i7-4770 3.4 GHz machine running
Ubuntu Linux 12.04.5 with ASLR and turbo mode off to

reduce the possible noise during the measurements. We
compiled the Chrome browser (version 42.0.2305.0, 64
bit) with the default release configuration as well as with
the different variants of VTable protection added to the
configuration. We evaluated performance across a se-
ries of popular browser benchmarks. Every benchmark
is executed 10 times and with the average being taken
as the final value. The results are depicted in Figure 9
and, as expected, the fine-grained VTV, the scheme we
propose in this paper, performs better than the other
variant of VTV. This mainly stems from the fact that
the available targets at virtual call-sites are reduced the
most in fine-grained VTV. Therefore, we stress that our
proposal does not sacrifice performance for better secu-
rity, but, instead, it is better in both performance and
security, compared to the original VTV.

6. RELATED WORK
Protecting return addresses stored on the stack [9]

and support of non-executable data by many hardware
processors and operating systems have raised the bar in
software exploitation. Attackers have no way to inject
code anymore, and they have to reuse existing code [18]
by combining multiple bugs (one for taking control and
one for leaking the process layout [19] for overcoming
randomization [16]). Sophisticated exploits appeared
and drove the community to seek a generic principle
that could eventually offer sound protection for soft-
ware, namely Control-Flow Integrity (CFI) [2].

CFI suggests that binaries should be able to exercise
only the control-flows that are allowed by the program’s
source. All indirect branches that happen at run-time
should not be arbitrarily influenced by user input. Ap-
plying CFI in real-world software is challenging, since
legacy applications cannot be recompiled, and even in
the case where source is available, discovery of the com-
plete control-flow graph is challenging [14], while the
performance of validating call targets can produce over-
heads. Therefore, relaxed implementations [22,23] were
proposed that could be applied directly in binaries, but
as it was quickly demonstrated, these implementations
sacrificed security and therefore they are potentially ex-
ploitable [6, 10,11].

Another approach for enforcing CFI is by leverag-
ing certain hardware features, such as the Last Branch
Record (LBR) debug registers, for performing anomaly
detection in the last indirect branches a process has fol-
lowed [8,15]. Unfortunately it seems that an exploit can
evade detection by inserting legitimate-looking gadgets
in its ROP chain [6, 10,12].

A particular set of CFI solutions focus on protecting
only VTable pointers. The details of different variants
are discussed in Section 2.2.

Last but not least, researchers have proposed methods
for defending against use-after-free vulnerabilities based
on custom allocators [3], which do not allow a memory
area to host different type of objects during the life cycle
of the process, or patching the developer’s code for keep-
ing track of dangling pointers [21]. These techniques
protect only against use-after-free bugs, and they expe-
rience serious memory and computational overheads.

7. CONCLUSION
In this paper we revisited VTable protections. Al-

though it was recently demonstrated that binary-based
solutions that aim at protecting VTables fail to recon-
struct C++ semantics, and thus they are potentially
vulnerable, we further argued that even when source
code is available, the analysis is not straight-forward.
We went through the state-of-the-art industry standard
implementations, VTV, and highlighted weaknesses. Based
on that, we formally modeled and designed an optimal
solution for protecting VTables, and we implemented
our proposal in GCC. In addition, we developed a test-
ing methodology that can demonstrate that our analysis
is correct, while it can also assist in evaluating simi-
lar VTable-protection frameworks. This paper suggests
a formal guideline and evaluation framework for any
methodology that aims at hardening binaries by pro-
tecting VTables.

Acknowledgment This work is supported by the
European Research Council through project ERC-2010-
StG 259108-ROSETTA, by the Microsoft Research PhD
Scholarship Programme through the project MRL 2011-
049.9, by the Netherlands Organisation for Scientific Re-
search through grant NWO 639.023.309 VICI “Dows-
ing”, and by the European Commission through the
project SHARCS under Grant Agreement No. 644571.

8. REFERENCES
[1] Itanium C++ ABI.

mentorembedded.github.io/cxx-abi/abi.html.

[2] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and
Jay Ligatti. Control-flow integrity. In Proc. of the
12th ACM CCS, 2005.

[3] Periklis Akritidis. Cling: A memory allocator to
mitigate dangling pointers. In Proc. of Usenix
Security’10.

[4] S. Andersen and V. Abella. Changes to
Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies,
Data Execution Prevention, 2004. http://technet.
microsoft.com/en-us/library/bb457155.aspx.

[5] Aravind Prakash, Xunchao Hu, and Heng Yin.
vfGuard: Strict Protection for Virtual Function
Calls in COTS C++ Binaries. In Proc. of the
22nd NDSS, 2015.

[6] Nicholas Carlini and David Wagner. ROP is Still
Dangerous: Breaking Modern Defenses. In Proc.
of Usenix Security’14.

[7] Chao Zhang, Chengyu Songz, Kevin Zhijie Chen,
Zhaofeng Cheny, and Dawn Song. VTint:
Protecting Virtual Function Tables’ Integrity. In
Proc. of the 22nd NDSS, 2015.

[8] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua
Ding, and Robert H. Deng. ROPecker: A Generic
and Practical Approach For Defending Against
ROP Attacks. In Proc. of the 21st NDSS, 2014.

[9] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang,
et al. StackGuard: Automatic adaptive detection

and prevention of buffer-overflow attacks. In Proc.
of Usenix Security’98.

[10] Lucas Davi, Ahmad-Reza Sadeghi, Daniel
Lehmann, and Fabian Monrose. Stitching the
Gadgets: On the Ineffectiveness of Coarse-Grained
Control-Flow Integrity Protection. In Proc. of
Usenix Security’14, August.

[11] Enes Göktaş, Elias Athanasopoulos, Herbert Bos,
and Georgios Portokalidis. Out of control:
Overcoming control-flow integrity. In Proc. of the
35th IEEE S&P. IEEE, 2014.

[12] Enes Göktaş, Elias Athanasopoulos, Michalis
Polychronakis, Herbert Bos, and Georgios
Portokalidis. Size Does Matter: Why Using
Gadget-Chain Length to Prevent Code-Reuse
Attacks is Hard. In Proc. of Usenix Security’14.

[13] Dongseok Jang, Zachary Tatlock, and Sorin
Lerner. SAFEDISPATCH: Securing C++ virtual
calls from memory corruption attacks. In Proc. of
the 21st NDSS, 2014.

[14] Ben Niu and Gang Tan. Modular Control-flow
Integrity. In Proc. of the 35th ACM PLDI, 2014.

[15] Vasilis Pappas, Michalis Polychronakis, and
Angelos D. Keromytis. Transparent ROP Exploit
Mitigation Using Indirect Branch Tracing. In
Proc. of Usenix Security’13.

[16] PaX Team. Address Space Layout Randomization
(ASLR), 2003. pax.grsecurity.net/docs/aslr.txt.

[17] Felix Schuster, Thomas Tendyck, Christopher
Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and
Thorsten Holz. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing
Code Reuse Attacks in C++ Applications. In
Proc. of the 36th IEEE S&P, May 2015.

[18] Hovav Shacham. The Geometry of Innocent Flesh
on the Bone: Return-into-libc without Function
Calls (on the x86). In Proc. of the 14th ACM
CCS, 2007.

[19] Kevin Z. Snow, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, Fabian
Monrose, and Ahmad-Reza Sadeghi. Just-In-Time
Code Reuse: On the Effectiveness of Fine-Grained
Address Space Layout Randomization. In Proc. of
the 34th IEEE S&P, 2013.

[20] Caroline Tice, Tom Roeder, Peter Collingbourne,

Stephen Checkoway, Úlfar Erlingsson, Luis
Lozano, and Geoff Pike. Enforcing Forward-edge
Control-flow Integrity in GCC and LLVM. In
Proc. of Usenix Security’14.

[21] Yves Younan. FreeSentry: Protecting Against
Use-After-Free Vulnerabilities Due to Dangling
Pointers. In Proc. of the 22nd NDSS, 2015.

[22] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan,
L. Szekeres, S. McCamant, D. Song, and Wei Zou.
Practical Control Flow Integrity and
Randomization for Binary Executables. In Proc.
of the 34th IEEE S&P, 2013.

[23] Mingwei Zhang and R Sekar. Control flow
integrity for COTS binaries. In Proc. of Usenix
Security’13.

mentorembedded.github.io/cxx-abi/abi.html
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
pax.grsecurity.net/docs/aslr.txt

	Introduction
	VTable Protection Today
	C++ dynamic dispatching
	VTable integrity and limitations
	Generating VTable sets
	Call-site type inference

	ShrinkWrapping the VTables
	Precise call-site type inference
	Legitimate VTable targets

	Stronger VTable Protection
	An extension to VTV
	Optimal VTable protection

	Evaluation
	Microbenchmark evaluating correctness
	Chrome
	Building Chrome with VTable protection
	Security evaluation
	Performance overhead

	Related Work
	Conclusion
	References

