
Practical Context-Sensitive CFI

Victor van der Veen†‡ Dennis Andriesse†∗ Enes Göktaş∗ Ben Gras∗
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ABSTRACT

Current Control-Flow Integrity (CFI) implementations track
control edges individually, insensitive to the context of pre-
ceding edges. Recent work demonstrates that this leaves suf-
ficient leeway for powerful ROP attacks. Context-sensitive
CFI, which can provide enhanced security, is widely consid-
ered impractical for real-world adoption. Our work shows
that Context-sensitive CFI (CCFI) for both the backward
and forward edge can be implemented efficiently on com-
modity hardware. We present PathArmor , a binary-level
CCFI implementation which tracks paths to sensitive pro-
gram states, and defines the set of valid control edges within
the state context to yield higher precision than existing CFI
implementations. Even with simple context-sensitive poli-
cies, PathArmor yields significantly stronger CFI invariants
than context-insensitive CFI, with similar performance.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection

General Terms

Security
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1. INTRODUCTION
Control-Flow Integrity (CFI) [8] has developed into one

of the most promising techniques to stop code reuse attacks
against C and C++ programs. Typically, such attacks cir-
cumvent common defenses such as DEP/W⊕X by diverting
a program’s control flow to a set of Return-Oriented Pro-
gramming (ROP) gadgets [17, 42]. Likewise, they defeat
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widely deployed ASLR by either targeting gadgets at fixed
(non-randomized) addresses [13], or by dynamically disclos-
ing the addresses of randomized gadgets [45]. CFI promises
to prevent all such attacks by ensuring that all control trans-
fers conform to the program’s original Control Flow Graph
(CFG). In theory, CFI is very powerful and, in its purest and
ideal form, provably secure against most integrity violations
of the control flow [7].

Ten years after the original CFI proposal [6], however, re-
searchers are still working to find practical CFI implementa-
tions [19,26,31,36,47,53,55], able to approximate the secu-
rity of the purest form of CFI with acceptable performance.
Common CFI solutions, including state-of-the-art binary-
level implementations such as bin-CFI [55] and CCFIR [53],
attempt to substantially relax constraints on the set of le-
gal targets for both the backward (e.g., ret instructions)
and forward (e.g., indirect call instructions) control edges.
While doing so reduces the performance overhead to a few
percent only, it also provides more degrees of freedom for
the attackers. Other even more lightweight CFI solutions,
such as ROPecker [19] and kBouncer [36], build on heuristics
and hardware support to detect anomalous control flows—
which resemble ROP gadget chains—and stop many current
exploitation attempts at low performance overheads. Un-
fortunately, a string of recent publications comprehensively
shows that it is possible to circumvent all these lightweight
CFI solutions with relatively little effort [16,24,27,28,41].

A key problem with traditional CFI solutions—even re-
cent source-level fine-grained ones [47]—is that they enforce
only context-insensitive CFI policies, which examine con-
trol edges in isolation and attempt to statically derive the
resulting superset of all the possible targets according to the
CFG. The lack of context inevitably results in weak CFI in-
variants, allowing attackers to freely chain edges together
and form paths that are even trivially infeasible in the orig-
inal CFG (e.g., returning to a function never on the active
call stack [27]).

Context-sensitive CFI techniques are a promising way to
address this problem, since they rely on context-sensitive
static analysis to associate CFI invariants to control-flow
paths—i.e., multiple consecutive edges—in the CFG and en-
force such invariants on execution paths at runtime. The
stronger security guarantees provided by context-sensitive
CFI techniques have been acknowledged as early as in the



original CFI proposal, but their real-world adoption has
been rapidly dismissed as impractical [6].

In this paper, we demonstrate that Context-sensitive CFI
(CCFI) can indeed be implemented in an efficient, reliable,
and practical way for real-world applications. We present
PathArmor1, the first binary-level CCFI solution which en-
forces context-sensitive CFI policies on both the backward
and forward edges. PathArmor relies on commodity hard-
ware support to efficiently and reliably monitor execution
paths to sensitive functions which can be used to mount
control-flow diversion attacks [36], and uses a carefully opti-
mized binary instrumentation design to enforce CCFI invari-
ants on the monitored paths. PathArmor ’s path invariants
are derived by a scalable context-sensitive static analysis
performed over the CFG on-demand, which uses caching of
path verification steps to achieve high efficiency. Verifica-
tion itself is also very efficient, since all the CFI checks are
batched at sensitive program points.

To show the practicality of our design, we have proto-
typed two context-sensitive and binary-level CFI policies
(for the backward and forward edges, respectively) on top
of PathArmor . Moreover, our framework can also serve as a
general foundation for even stronger CCFI implementations,
for instance using context-sensitive data-flow analysis at the
source level. Even in the current setup, PathArmor pro-
vides a comprehensive CCFI protection system with much
stronger security guarantees than traditional CFI solutions,
while matching or even improving their performance. More-
over, due to its optimized design, PathArmor can also serve
as an efficient basis for fine-grained context-insensitive CFI
(CCFI) policies.

Contributions.
Our contribution is threefold:

• We identify the key challenges towards practical CCFI
implementations and investigate opportunities to ad-
dress these challenges in real-world applications and
commodity platforms.

• We present PathArmor , a framework to efficiently sup-
port arbitrary context-sensitive and context-insensitive
CFI policies on commodity platforms. To fulfill its
goals, PathArmor relies on hardware support, binary
instrumentation, and on-demand static analysis to batch
even sophisticated CFI checks at the relevant sensi-
tive points in a binary. We complement our solution
with fine-grained CCFI policies and simple but com-
prehensive (backward and forward edge) CCFI poli-
cies, making PathArmor the first practical end-to-end
CCFI implementation.

• We evaluate PathArmor using popular server applica-
tions and the SPEC CPU2006 benchmarks. Our re-
sults show that PathArmor can significantly restrict
the number of legal control flows compared to tradi-
tional CFI solutions (−70% across all our applications,
geometric mean), while yielding bounded memory us-
age (+18-74 MB on our applications) and low run-time
performance overhead (3% on SPEC and 8.4% on our
applications, geometric mean).

1PathArmor is open source, available via https://github.
com/dennisaa/patharmor

2. CONTEXT-SENSITIVE CFI
The general goal of every CFI solution is to allow all the

control flows which occur in the interprocedural control-flow
graph (CFG) defined by the programmer, and reject the
largest possible fraction of the other flows as illegal [8]. This
section formalizes the definition of a legal flow adopted in
existing practical CFI solutions, contrasts it with the stricter
definition adopted in Context-sensitive CFI (CCFI), and de-
tails the key challenges towards practical CCFI.

2.1 Legal flows
We model a CFG as a digraph G = (V, E) where V is

the set of basic blocks, and E the set of control edges in the
CFG defined by the program.

Traditional CFI [8] enforces that each individual (indirect)
control transfer taken by the program during the execution
must match an edge in the CFG:

Context-insensitive CFI (CCFI). For each control trans-
fer ei = (vx, vy) between basic blocks vx and vy, CCFI en-
forces that ei ∈ E.

In other words, CCFI checks conformance to the current
position in the CFG and does not distinguish between differ-
ent paths in the CFG that lead to a given control transfer.
For instance, consider the following two paths that both lead
to E():

A(){ indirect call to B(); } C(){ indirect call to D(); }

B(){ indirect call to E(); } D(){ indirect call to E(); }

Disregarding the context would allow function E to return
to either B or D. However, we should only allow a return
(backward edge) to B, when coming from A (and B). Like-
wise, we should only allow a return to D if the program got
there via C.

We can easily construct a similar example for the CFG’s
forward edges, for instance by considering callbacks. Sup-
pose B and D both call E with callback argument cbB and
cbD, respectively. When E invokes the callback, CCFI would
allow either of the (cbB and cbD) targets, while taking the
context into consideration would allow us to (rightly) con-
clude that cbB is only legal if we reached E via B.

To emulate context-sensitive behavior to some degree (back-
ward edges only) a number of existing CFI solutions com-
plement their operations with a shadow stack [11, 18, 20,
21, 25, 38, 39, 43, 51]. However, shadow stacks are typically
expensive at the binary level [18, 23, 43]. Moreover, unlike
CFI techniques, their security relies on the integrity of in-
process run-time information, which state-of-the-art imple-
mentations typically protect using system-enforced ASLR—
with its known security limitations and probabilistic guar-
antees against arbitrary memory write vulnerabilities. All
the other existing CFI solutions, in turn, implement fully
context-insensitive (CCFI) policies as described above.

In addition, state-of-the-art binary-level CFI solutions,
such as CCFIR [53] or binCFI [55], further relax their CCFI
policies for performance reasons. These context-insensitive
implementations group control transfer sources and destina-
tions based on a general definition of type, and enforce that
the source and destination type match:

Practical CCFI. For each control transfer ei = (vx, vy)
between basic blocks vx and vy, practical CCFI ensures x ∈
sources(type(ei)) ∧ y ∈ sinks(type(ei)), where sources(τ)

https://github.com/dennisaa/patharmor
https://github.com/dennisaa/patharmor


and sinks(τ) denote the sets of program locations having
outbound or inbound edges of type τ , respectively.

Practical CCFI precludes malicious control transfers like
jumps into the middle of a function, or returns to non-call
sites. Attackers, however, can still successfully mount pow-
erful attacks using gadgets which adhere to the imposed type
restrictions [15,16,24,27,41].

CCFI provides stronger CFI invariants than both practi-
cal and ideal CCFI. Rather than considering control trans-
fers individually, CCFI examines each transfer in the context
of recently executed transfers:

CCFI. Given a path p = (e1, e2, . . . , en) of control trans-
fers leading to a given program point P , CCFI verifies the
validity of P by checking that ∀i ∈ {1, 2, . . . , n}, edge ei is
consecutively valid in the context of all the preceding CFG
edges e1, . . . , ei−1.

Since CFI checks are enforced per path (rather than per
edge), CCFI can support arbitrarily powerful context-sensitive
policies on both the backward and forward edges.

2.2 Challenges
In this section, we discuss the three fundamental chal-

lenges towards practical CCFI, and in the remainder of the
paper, we present PathArmor—the first practical binary-
level solution to these problems—proving CCFI effective in
practice.

C1. Efficient path monitoring A major challenge in
implementing a practical CCFI solution is identifying an ef-
ficient mechanism to constantly monitor paths of executed
control flow transfers at runtime. Other than imposing min-
imal performance overhead, the path monitoring mechanism
should also be reliable, that is neither the program nor the
attacker should be able to tamper with the recorded data.
All these requirements were considered the key obstacle to
the real-world adoption of context-sensitive CFI in the orig-
inal CFI proposal [6].

To address this challenge, PathArmor relies on branch
recording features available in modern x86_64 processors to
implement an efficient and reliable path monitoring mecha-
nism at runtime.

C2. Efficient path analysis To verify the validity of a
path towards a given program point P , CCFI needs to stat-
ically analyze the CFG and identify the legal paths towards
P in a context-sensitive fashion, validating all the edges in
the path. The naive solution—statically enumerating all the
legal paths towards all the relevant program points—cannot
scale efficiently to large and complex CFGs, with the num-
ber of paths growing exponentially with |V | and |E|. This
path explosion problem is well known in several application
domains (symbolic execution, among others [30]). Even fo-
cusing our static analysis on a particular program point and
sequence of indirect control transfers derived by run-time
information only partially eliminates this problem. Path
explosion can still occur between any two indirect control
edges, especially in presence of loops and long sequences of
direct jumps and calls.

To address this challenge, PathArmor relies on an on-
demand, constraint-driven context-sensitive static analysis
over a normalized CFG representation. The constraints, de-
rived by run-time information recorded by our path monitor,

Figure 1: Overview of PathArmor.

allow our context-sensitive path analysis to efficiently scale
to arbitrarily large and complex CFGs.

C3. Efficient path verification To detect control-flow
diversion attacks, CCFI needs to carefully select program
points to verify the current execution path for validity. To
provide strong security guarantees, path verification needs
to be performed in all the possible execution states that are
potentially harmful. The naive solution—performing path
verification after every executed control transfer—is clearly
inefficient and scales poorly with the path length.

To address this challenge, PathArmor relies on a kernel
module to efficiently verify only the paths to well-defined
sensitive functions in the program. While the verification
still needs to run for each path to these functions encoun-
tered during the execution, PathArmor aggressively caches
verification results to minimize the resulting impact on run-
time performance. Since the number of paths to sensitive
functions is limited in practice (as shown in Section 5.3 for
popular server programs), caching is effective in amortizing
path verification costs throughout the execution.

3. PATHARMOR
Figure 1 presents the high-level overview of PathArmor

and details its three main components: (i) a kernel module,
(ii) an on-demand static analyzer, and (iii) an instrumenta-
tion component.

PathArmor relies on a kernel module which provides a
Branch Record core to support per-thread control transfer
monitoring in multi-process and multi-threaded programs.
For this purpose, our module uses the 16 Last Branch Record
(LBR) registers available in modern Intel processors and
only accessible from ring 0. This strategy allows our module
to monitor paths of (16) recently exercised control transfers
in an efficient and reliable way (addressing C1).

In addition to path monitoring, our kernel module trig-
gers path verification steps upon security-sensitive system
calls issued by the program—but also other special sensitive
operations, as detailed later. To further improve the perfor-
mance of path verification, our module also maintains a path
cache, which stores hashes of previously verified paths and
eliminates the need to enforce more expensive CCFI checks



at each verification (addressing C3). We discuss our kernel
module in more detail in Section 3.1.

Once the kernel module is loaded, protected program bi-
naries run with PathArmor ’s dynamic instrumentation com-
ponent. This component first starts our path analyzer, an ex-
ternal trusted component which runs in the background and
waits for path verification requests from the kernel module
via a dedicated upcall interface. To satisfy path verification
requests, our analyzer receives all the necessary LBR-based
path information—and constraints on indirect but also in-
terprocedural direct control transfers—from our kernel mod-
ule and performs static analysis on-demand to enforce our
CCFI policies. For this purpose, the analyzer needs to re-
construct the CFG of the target binary and preprocess it
with a preliminary CFG reduction step that prunes all the
irrelevant intraprocedural edges from the control-flow graph.
This step and our constraint-based strategy eliminate all the
intraprocedural and interprocedural (respectively) path ex-
plosion threats, ensuring a scalable on-demand path analysis
(addressing C2). After determining whether a path is valid,
our analyzer reports its findings back to the kernel module,
which, in response, stops the program (if verification fails)
or populates the path cache (otherwise). We elaborate more
on our path analyzer in Section 3.2.

After initializing PathArmor ’s path analyzer, our dynamic
instrumentation component sets up an in-program commu-
nication channel with the kernel module to enable (and later
manage) path monitoring for the target binary. Finally,
our instrumentation component instruments the binary ac-
cording to a predetermined sensitive path termination pol-
icy. PathArmor can, in principle, be configured to verify
either entire paths to sensitive system calls or limit such
paths to the library call interface. The current PathAr-
mor implementation uses the latter mode of operation by
default, given that, on commodity hardware, the LBR can
only record the 16 most recently executed control transfers
and allowing branch tracing inside the libraries can poten-
tially “pollute” paths and thus “erase” program context—an
observation also made in prior work [36]. The trade off—
which can, however, be reconsidered with future hardware
extensions—is that PathArmor ’s default configuration can
defend against control-flow diversion attacks only in the pro-
gram, excluding those originating from vulnerabilities in the
libraries from the threat model. For completeness, we eval-
uate the feasibility of future in-library path tracking in Sec-
tion 5.5. We discuss our instrumentation component in more
detail in Section 3.3.

3.1 Kernel Module
As illustrated in Figure 1, the kernel module consists of

two main components: (i) a system call interceptor that
sends validation requests (via a cache) to the on-demand
static analyzer, and (ii) a Branch Record core (LBR API)
that monitors and records branches occurring within the
target’s main address space.

3.1.1 System Call Interception

As mentioned in Section 2.2, PathArmor limits verifica-
tion to a small number of security sensitive path endpoints
in order to maintain minimal runtime overhead. In partic-
ular, these endpoints consist of a set of dangerous system
calls an attacker requires to deploy a meaningful exploit,
like exec and mprotect (and other dedicated sensitive op-

erations, see Section 3.3.3). We refer to them as sensitive
calls. Like other work in this area [19], we propose to detect
only these dangerous endpoints, rather than every possible
library and system call.

To intercept system calls at runtime, the kernel module
installs an alternative syscall handler. When our target re-
quests to execute a dangerous system call, we pause exe-
cution, collect LBR data, and forward it to the on-demand
static analyzer in user space. If the analyzer returns true

(meaning that the path was found in the CFG and thus is
valid), the kernel module stores a hash of the path in a cache
data structure before permitting the system call. We use
cryptographically secure second-preimage resistant2 hash al-
gorithms to prevent path crafting attacks, where attackers
craft an invalid path with a hash that collides with that of
a valid path.

If the exact same path is executed a second time, PathAr-
mor looks for its hash in the cache, and only sends a request
to the on-demand static analyzer if no match was found in
the cache. This limits the amount of overhead caused by
traversing the CFG.

In the event that on-demand static analysis returns a neg-
ative result (no valid path was found in the CFG), the mod-
ule stops the program and reports that an attack was de-
tected. With the LBR data still in place, this can also help
pinpoint the exact location of the attack.

3.1.2 Branch Recording

In addition to path verification, the kernel module pro-
vides a Branch Recording core that implements support for
tracking branches on a per process-thread basis. In addition,
it exposes an interface to the instrumented libraries that is
used to disable branch recording during library execution.
It can do this either using the LBR (the current default)
or Intel’s Branch Trace Storage (BTS) feature. Although
prior work has shown that BTS imposes a significant per-
formance slowdown (typically in the order of 20-40x [46]),
its ‘unlimited’ nature provides a useful means to measure
how many LBR registers are required to approach optimal
security (Section 5).

Ideally, we configure the Branch Recording core to col-
lect only indirect branches (indirect jumps, indirect calls
and returns), as only these branches can be modified by an
attacker. However, armed only with information about in-
direct branches exercised by the program, we cannot elim-
inate the path explosion problem. To solve this issue, we
instruct the Branch Recording core to keep track of di-
rect call instructions as well, which can be used by the on-
demand static analysis to eliminate path explosion, render-
ing PathArmor efficient in practice. We elaborate more on
this in Section 3.2.

To disable branch recording during library execution, we
expose two ioctl() requests to libraries: LIB_ENTER and
LIB_EXIT. The dynamic instrumentation component detailed
in Section 3.3 inserts these requests for each used library
function by instrumenting their entry and exit points. We
discuss related implementation challenges such as how to
enable branch recording again for callbacks, in depth in Sec-
tion 4. Note that attackers cannot abuse ioctl requests to
disable PathArmor , as discussed in Section 6.3.

2For a second-preimage resistant hash algorithm h and input
x, it is computationally hard to find a second input x′ 6= x
such that h(x) = h(x′).



3.2 Path Analyzer
The role of the path analyzer is to verify (on the static

CFG) at runtime if a particular path observed at an end-
point is valid. It consults the CFG of the binary and searches
it for the path. We now discuss the three main steps of this
analysis: CFG generation, a reduction of the CFG to elimi-
nate the path explosion problem, and path validation.

3.2.1 CFG Generation

To validate a path, PathArmor requires an accurate CFG
of the protected binary. To obtain a CFG, we use existing
binary analysis frameworks to disassemble and analyze bi-
naries, as detailed in Section 4. Previous work has shown
that the results are accurate enough in practice [14,54]. To
err on the safe side, PathArmor tolerates potential errors by
overestimating the CFG when necessary. In the worst case,
this may cause PathArmor to accept invalid paths, but it
will never reject legitimate ones.

Furthermore, PathArmor implements indirect edge reso-
lution policies to augment a CFG walk with indirect edges
in a context-sensitive manner. If these policies fail, we resort
to a fine-grained context-insensitive policy instead [53,55].

For backward edges (i.e., returns), our policies imple-
ment a fully context-sensitive resolution strategy, to which
we refer as call/return matching. This strategy emulates a
runtime call stack by tracking call and return edges as these
are encountered.

For forward edges (i.e., indirect calls), our current pro-
totype supports a simple context-sensitive strategy which
resolves code pointers propagated across caller-callee pairs
with no contrived data flow. This policy lets us unam-
biguously resolve indirect call sites, at which call targets
are loaded as constants and passed as a callback argument.
However, our path abstraction, in principle, enables much
more complex context-sensitive extensions. We evaluate
the additional security provided by forward-edge context-
sensitivity in Section 5. In cases where our current policy is
unable to trace a code pointer (e.g., in case of a long-lived
code pointer stored on the heap), PathArmor resorts to a
CCFI policy which matches all indirect call sites with all
the functions having their address taken. Indirect jumps, in
turn, are conservatively resolved by the underlying binary
analysis framework.

We also implement a strategy to augment the precision
of indirect jumps found in PLT entries. The CFG is up-
dated with data received from the instrumentation compo-
nent, enabling unambiguous target resolution. We discuss
this resolution in more detail in Section 3.3.1.

3.2.2 Addressing Path Explosion

As discussed in Section 2, static analysis of large CFGs
may lead to a path explosion problem, where the number
of paths to explore increases exponentially with the explo-
ration depth. PathArmor takes two measures to address the
problem and perform efficient path verification.

First, as a preprocessing round, PathArmor performs a
CFG reduction step that significantly prunes the CFG, and
preserves reachability relations with respect to indirect edges
and interprocedural direct edges. This step finds all possi-
ble paths of direct edges between entry and exit points of
each function, and then collapses these paths down to a
single edge between each entry point and the exit points
reachable from it. This makes the subsequent search much

faster, as needless (re-)explorations of direct edges can be
avoided (e.g., loops).

Second, call/return matching (discussed in Section 3.2.1)
allows us to recognize and discard impossible paths, such
as paths that call a function from one call site, and sub-
sequently return to another call site. Without call/return
matching, the path search would have no way of identifying
such mismatches.

3.2.3 Path Verification

The path analyzer is given a path that must be verified.
The path is an LBR state containing direct and indirect
calls, indirect jumps, and returns. To verify whether it is
valid, the analyzer performs a Depth-First Search (DFS) on
the CFG to find a path that contains the provided edges
in the same order as they were recorded by the LBR. A
recorded path is thus considered valid iff: (i) all edges in the
LBR state exist within the CFG, and (ii) these edges can be
linked together via a valid path of direct edges within the
CFG. To ensure that the search terminates quickly if a path
does not exist (e.g., the LBR state is malicious), the DFS
does not follow indirect edges or direct call edges. Following
such edges would not make sense, because by definition, such
edges would be in the LBR state if they occurred on the path
under analysis.

Note that in the presence of (i) direct call recording and
(ii) the CFG reduction, the DFS cannot get stuck on cycles
within the CFG. Indeed, it first consults the LBR for the
oldest recorded branch, from a basic block A to a basic block
B, and then loops over all possible outgoing edges of B to
see which one to follow. Due to the CFG reduction, direct
jump edges are collapsed, so the outgoing edges of B are
all either indirect edges or direct call edges. For each edge
the DFS examines, it checks whether this edge is the next
recorded branch. If this does not hold, it tries the next
edge, until it finds one that matches the following LBR state.
From here, it restarts analysis, starting from this new edge.
This process continues until the last edge (the most recently
recorded branch) is found.

3.3 Dynamic Instrumentation
The instrumentation component consists of both a library

instrumentation (in the form of a special loader), and dy-
namic binary instrumentation module. Its main objectives
are (i) collecting address offsets (for both libraries and the
target program) and passing these to the static analysis com-
ponent, (ii) instrumenting libraries such that they disable
LBR tracking before their execution starts and re-enable it
again once finished, and (iii) starting the actual target pro-
cess. In addition, the instrumentation component opens a
communication channel with the kernel module that can be
used by the inserted instrumentation snippets to communi-
cate with the Branch Recording core. We now discuss the
two main instrumentation modules in more detail.

3.3.1 Loader

The loader is responsible for setting up the PathArmor
environment before starting the protected binary. It is im-
plemented as a pre-loaded shared library using LD_PRELOAD

and instruments the target binary’s main() function. This
hook is then used to open an ioctl() interface with the
LBR API of the kernel module, which in turn is used by the



inserted code snippets to notify the kernel module of specific
events (e.g., LIB_ENTER).

In addition, the loader collects the program’s PLT and
GOT entries as well as the base addresses of the different li-
braries that are in place. This information is then passed via
the kernel module to the on-demand static analyzer where it
is used to distinguish calls to library functions from branches
within the program’s main address space. For this to work,
the target program is started with LD_BIND_NOW=1, which
causes the dynamic linker to resolve all symbols at the pro-
gram startup instead of deferring function call resolution to
the point when they are first referenced.

3.3.2 Rewriter

In its default configuration, PathArmor terminates all sen-
sitive paths at library boundaries. For this purpose, our dy-
namic instrumentation module uses Dyninst to rewrite all
library functions that are used by the program (i.e., those
that can be found in the process’ PLT table, as well as those
dynamically loaded using dlsym()). The inserted code snip-
pets ensure that library functions first send an LBR disable
request to the LBR API in the kernel module before execut-
ing, and finish with an LBR enable request before returning
to the program.

Disabling the LBR of course comes at a price: a library
function may at some point invoke a callback handler which
may or may not reside in the target’s address space. If we
do not re-enable the LBR again on callbacks, a bug in the
callback handler could still be exploited by an attacker as
we lose vital information on executed paths. To overcome
this problem, we apply another round of dynamic instru-
mentation, only this time to make sure that whenever such
a callback is invoked, LBR tracking is enabled again. We
discuss this process in more detail in Section 3.3.3.

The dynamic instrumentation module of the initialization
component performs necessary rewriting tasks at load time
(when dynamically linked libraries are available) and at run-
time (every time a new shared library is dynamically loaded
into memory). Note that we only need to instrument shared
libraries. No instrumentation is required in the protected
applications, leaving the original target’s code space intact.

3.3.3 Callbacks

As mentioned above, a second dynamic instrumentation
round is required in order to enable branch recording again
when a library function invokes a callback that lies in the
program’s binary (e.g., qsort()). Instrumenting callback
sites is done by looping over all shared library functions and
searching for indirect call instructions. For each indirect
call instruction, a short snippet of code is inserted that (i)
tests if the target of the indirect call lies in the target pro-
gram’s address space, and (ii) if this is the case, wraps the
call instruction in two ioctl() system calls that notify the
kernel module that a callback function is entered or exited:
(CALLBACK_ENTER and CALLBACK_EXIT, respectively).

Whenever the kernel module receives the CALLBACK_ENTER

request, it pushes the current LBR state (i.e., the content
of the LBR registers as seen before the library function that
performs the callback) to an internal stack of LBR contexts.
When the callback exits (CALLBACK_EXIT), the kernel mod-
ule pops the top of this LBR stack back into the actual regis-
ters. To support code that forks within a callback, the kernel
module copies the stack of LBR contexts to the newly cre-

ated process, so that parent and child both safely return to
their callback handlers without inconsistent branch records.

Observe that signals are essentially a specialized form of
callbacks and can be processed in a similar manner. The
only difference is that instead of instrumenting code, we
install a hook on the kernel’s signal delivery function. This
hook is executed before control is returned to the signal
handler, allowing us to save the current LBR context so
that it can be restored upon the sigreturn system call.

This approach of switching LBR contexts at the moment
callback handlers are invoked raises a specific security threat
where an attacker could install a different handler than nor-
mally enforced by the CFG. Consider the example where an
attacker exploits a memory corruption bug to install a call-
back handler that fits his needs. Without applying any addi-
tional security measurements, this operation may go unno-
ticed (control-flow diversion happens indirectly in the kernel
or in the libraries). To overcome this situation, PathArmor
(i) considers signal handler registration and LBR manage-
ment operations (i.e., push context, pop context) as sensi-
tive operations and (ii) always copies the last branch en-
try during LBR context switching as the first branch en-
try for the new context, allowing on-demand static anal-
ysis to apply our indirect edge resolution policies on the
library-originated indirect call edge before allowing the call-
back. A symmetric approach is used to avoid false posi-
tives for library-originated function pointers (e.g., returned
by dlsym()) which are used for indirect call invocations by
the program. Our static analyzer resolves the “special” li-
brary target in a dedicated way without resorting to more
sophisticated modular CFI policies [34].

3.3.4 Special Constructs

Similarly to our callback support, PathArmor supports
the longjmp() construct by implementing a special handler
for this in the kernel module: for each setjmp(), the kernel
stores the existing LBR contents along with the provided
env argument. When a longjmp() is executed, our mod-
ule verifies the LBR contents, flushes them and restores the
LBR with the appropriate state as stored earlier (match-
ing env). Similarly to callbacks, we rely on our dynamic
instrumentation component to insert dedicated SETJMP and
LONGJMP ioctl() requests for each construct.

4. IMPLEMENTATION
We implemented PathArmor on Linux v3.13 for x86_64

with support for multi-process and multi-threaded applica-
tions. Our kernel module is implemented as a standard
loadable module for the Linux kernel in 1,752 LOC. The
on-demand static analysis component is implemented as a
plugin for the Dyninst binary analysis and rewriting frame-
work [10] in 6,741 LOC overall. The library instrumentation
is implemented as another Dyninst plugin in 1,625 LOC.

To intercept sensitive system calls, we install an alterna-
tive syscall handler by overwriting the MSR_LSTAR register.
PathArmor will forward most system calls directly to their
vanilla implementation, imposing little to zero extra over-
head. However, we consider a total of seven system call fam-
ilies as dangerous, and start verification whenever these are
encountered: mprotect and the mmap family (which can be
used to disable DEP/W⊕X), and the exec family (which can
be used to start a malicious command) are obvious choices
and have been considered in prior work in the area [19]. To



address the challenges related to signal handling as detailed
in Section 3.3.3, PathArmor also intercepts the sigaction

and sigreturn system calls. PathArmor can also be config-
ured to protect I/O system calls to prevent attacks like data
leaks and script injection in (for instance) web servers.

Since the Linux kernel currently does not support per-task
LBR context management, we implemented this to avoid
pollution from other processes. We used the standard pre-
emption notifier functionality (preempt_notifier_register)
provided by the Linux kernel to install hooks on context-
switches. During a context-switch-out (sched_out), PathAr-
mor stores the LBR state of the current process into an LBR
process table, to restore it later when the thread is sched-
uled in again (sched_in). This approach allows PathArmor
to support binaries that make use of multi-threading.

Our current PathArmor prototype is based on the Dyninst
binary rewriting framework, and as a consequence does not
support C++ exceptions. This limitation is not fundamen-
tal to PathArmor , and can be addressed in future work with
additional engineering effort.

5. EVALUATION
We evaluated PathArmor on a workstation equipped with

an Intel i5-2400 CPU 3.10 GHz and 8 GB of RAM. We ran
all our tests on an Ubuntu 14.04 installation running Linux
kernel 3.13 (x86_64). To measure the performance impact
of PathArmor for the worst case, we default PathArmor to
run in non-library operation mode, but we evaluate the ef-
fects of enabling in-library tracking in Section 5.5.

We focus our evaluation on popular Linux server appli-
cations, given that (i) they are widely known and adopted
in the research community for evaluation purposes, (ii) they
are popular exploitation targets for both local and remote
attacks, and (iii) they naturally contain a relevant number
of security-sensitive functions and can greatly benefit from
the protection guarantees provided by PathArmor . Specif-
ically, we evaluated our prototype with three popular FTP
servers (namely, vsftpd v1.1.0, proftpd v1.3.3, and pure-
ftpd v1.0.36), two popular web servers (nginx v0.8.54 and
lighttpd v1.4.28), a popular SSH server (the OpenSSH Dae-
mon v3.5), and a popular email server (exim v4.69). In addi-
tion, we also evaluated PathArmor ’s performance on SPEC
CPU2006.

To benchmark our web servers, we used the Apache bench-
mark [1] configured to issue 25,000 requests with 10 concur-
rent connections and 10 requests per connection. To bench-
mark our FTP servers, we relied on the pyftpbench bench-
mark [4] configured to open 100 connections and request 100
1 KB-sized files per connection. To benchmark OpenSSH
and exim, finally, we used the OpenSSH test suite [3] and a
homegrown script which repeatedly launches the sendemail
program [5], respectively. We configured all our applications
and benchmarks with their default settings. We ran all our
experiments 11 times (checking that the CPUs were fully
loaded throughout our tests) and report the median with
marginal variations observed across runs.

Our evaluation answers 4 key questions: (i) Security: Is
PathArmor effective in improving the security of existing
CFI techniques against control-flow diversion attacks? (ii)
Memory usage: How much memory does PathArmor re-
quire? (iii) Analysis time: Does PathArmor ’s static analy-
sis complete in reasonable time? (iv) Run-time performance:

Does PathArmor yield low run-time overhead while protect-
ing a relevant set of sensitive functions?

5.1 Security
To evaluate the security guarantees offered by PathArmor

and, in particular, the improvements offered by CCFI over
existing CCFI techniques, we measured the strength of the
CFI invariants extracted by our static analysis and enforced
by PathArmor ’s run-time verification. For this purpose,
we instructed our static analyzer to generate CFI statistics
during the execution of our benchmarks and compare the
results against fully context-insensitive CFI policies. Note
that these statistics (and metrics) are intended only to pro-
vide a clear picture of the strength of PathArmor ’s invari-
ants compared to other CFI solutions. As such, the follow-
ing discussion focuses on a relative comparison across CFI
implementations, rather than on absolute numbers.

Table 1 presents the resulting statistics aggregated across
all our applications. The first, second, and third group of
columns provide an overview of all the applications ana-
lyzed, their sensitive functions, and their interprocedural
CFG (or simply CFG) information generated by our ana-
lyzer with fully context-insensitive indirect edge resolution
policies. As the table shows, the number of sensitive func-
tions as well as the number of nodes and edges in the CFG
(|V | and |E|, respectively) varies greatly across applications,
reflecting their different internal structure.

The fourth group of columns, in turn, reports the frac-
tion of indirect backward edges (IB), indirect forward edges
(IF), and direct forward edges (DF) in the LBR averaged
across all the sensitive function calls during the execution
of our benchmarks. As expected, the overall distribution
is relatively stable across applications, with backward edges
largely dominating (indirect) forward edges (37% vs. 25%
geometric mean). Encouragingly, direct forward edges—
which, however necessary to scalably enforce our CCFI poli-
cies, also naturally decrease the number of LBR entries
subject to CFI enforcement—have a significant but non-
dominant impact in practice (37% geometric mean).

Finally, the last three column groups present averaged
gadget statistics for the coarse-grained CCFI, fine-grained
CCFI and CCFI policies (respectively). In detail, the |G|
column reports the average number of targets (and thus
gadgets) allowed by the given CFI policy for each indirect
edge observed in the LBR. The min[GLen] column, in turn,
provides more qualitative information on the resulting CFI-
allowed gadgets, by averaging the minimum allowed gadget
length for each edge observed in the LBR. As shown in the
table, CCFI yields a significantly lower average number of
gadgets compared to coarse-grained and fine-grained CCFI
(respectively, −99.8% and −74.8% geometric mean). Fig-
ure 2 also details the CDF of the number of allowed targets
for the two applications with most sensitive calls (exim and
proftpd). We observed similar trends for the other applica-
tions. The CDF confirms that CCFI allows very few targets
for the vast majority of control flow transfers—for instance,
on exim, 98% have less than 13 targets compared to around
85% for fine-grained CCFI and 72% for coarse-grained CCFI
(the common policy for binary-level CFI solutions [53, 55]).
This demonstrates the effectiveness of our context-sensitive
CFI policies, which can drastically restrict the number of
legal targets for most LBR entries.



CFG LBR (Avg) CCFIcg (Avg) CCFIfg (Avg) CCFI (Avg)

Server Functions |V | |E|
|EIB|

|E|
|EIF|

|E|
|EDF|

|E|
|G| min[GLen] |G| min[GLen] |G| min[GLen]

vsftpd sa,mm,mp 4,052 9,269 0.33 0.23 0.44 546.26 3.5 3.17 8.0 1.27 13.1
proftpd sa,sg,ki,mm 29,682 210,489 0.38 0.27 0.35 3244.50 2.2 19.59 4.0 4.71 7.5
pure-ftpd sa, 5,702 19,910 0.32 0.33 0.35 402.64 2.2 4.48 4.5 1.05 5.1
lighttpd sa,sg,ki,m4,el 7,380 38,006 0.38 0.22 0.40 561.00 2.0 2.77 4.8 1.00 5.5
nginx sa,ra,ki,m4,ee 26,029 432,829 0.45 0.20 0.35 1468.25 2.8 26.39 9.3 12.98 9.9
openssh sa,sg,mm,el,ev,ee 14,749 63,644 0.38 0.26 0.36 1722.81 2.1 13.91 3.9 1.59 7.2
exim sa,sg,ki,ev,ee 37,906 167,867 0.34 0.28 0.38 2578.79 2.2 17.02 4.4 2.33 11.1

Table 1: CFI statistics gathered during the execution of our benchmarks. Function endpoints: sa=sigaction,
sg=signal, ra=raise, ki=kill, mm=mmap, m4=mmap64, mp=mprotect, el=execl, ev=execv, ee=execve. The
CFG group reports the number of nodes and edges in the CFG. The LBR group reports the average number
of indirect backward edges, indirect forward edges, and direct forward edges in the LBR. The last three
groups compare coarse-grained, fine-grained, and context-sensitive CFI (average number of legal targets and
minimum gadget length).
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Figure 2: CDF of allowed gadgets for CCFI and
CCFI (two applications with most sensitive calls).

Our improvements are naturally also reflected in the over-
all complexity of the gadgets left to the attacker, with the av-
erage minimum allowed gadget length (min[GLen]) substan-
tially increasing compared to the coarse-grained and fine-
grained versions of CCFI (respectively, +245% and +53%
geometric mean). In general, shorter gadgets are easier to
fit together and are more preferred than longer gadgets for
building a ROP chain. By reducing the possible indirect
edge targets, the attacker’s gadget arsenal gets diminished
and the bar for exploitation increased. As an example, Ta-
ble 1 shows that the reduction in the average number of
indirect edge targets from 17 to 2.3 for exim resulted in an
increase of the average number of instructions in the shortest
allowed gadgets from 4.4 to 11. With CCFI, a deeper gad-
get analysis also revealed a significant increase in the average
number of register accesses in the shortest allowed gadgets
compared to the coarse-grained and fine-grained versions of
CCFI. The geometric means of these accesses for the coarse-
grained CCFI, the fine-grained CCFI and CCFI are respec-
tively 1.3, 4.5 and 7.7. This further confirms the increased
gadget complexity when using CCFI policies.

To evaluate the effectiveness of the particular CCFI tech-
niques implemented in PathArmor , we also examined the
impact of context sensitivity on both edges in more detail.
For this purpose, we first compared our (static) backward-
edge CCFI policy with that enforced by a (dynamic) shadow
stack, the only known (run-time) solution which mimics

#icalls
targetscs

targetsci

vsftpd 6 0.38
proftpd 120 0.99
pure-ftpd 11 1.00
lighttpd 66 0.84
nginx 271 0.82
openssh 131 0.82
exim 99 0.89

geomean 56 0.78

Table 2: Fraction of legal indirect targets for
(ideal binary-level) context-sensitive vs. context-
insensitive forward-edge CFI.

context-sensitive control-flow policies—albeit only on the
backward edge and using tamper-prone and more heavy-
weight instrumentation at the binary level. For a fair com-
parison, we focused our measurements on the fraction of
backward edges observed in the LBR which are allowed only
one target (in a fully context-sensitive fashion) by our CCFI
techniques and also relied on Intel’s BTS feature to simu-
late an LBR of arbitrary size—overcoming the restrictions
imposed by commodity hardware.

Figure 3 presents our results for increasing LBR sizes and
the two applications with most sensitive calls (exim and
proftpd). We observed similar trends for the other applica-
tions. On commodity hardware (16 LBR entries), PathAr-
mor can enforce a single target for nearly 75% of the back-
ward edges observed in the LBR. In the remaining cases, the
limited LBR size causes PathArmor to lose program con-
text and resort to CCFI policies. While the current LBR
size limit prevents PathArmor from fully reaching the ideal
shadow stack performance (100%), these results are still en-
couraging given the small default LBR size. In addition,
Figure 3 shows that future hardware extensions can help fill
the gap, e.g., enforcing a single target in 90% of cases with
70 LBR entries.

To evaluate the effectiveness of our forward-edge CCFI
policy, we examined the reduction in the number of allowed
indirect call targets caused by context sensitivity. Due to
the very limited number of indirect call entries in the LBR
for our test programs (which rarely use indirect calls close
to sensitive function points), however, we did not observe
any significant reduction in our experiments. To generalize
our results and eliminate any application-specific bias, we
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Figure 3: Fraction of single-target backedges for
CCFI (two applications with most sensitive calls)
when simulating an increasingly large LBR.

applied our policy to all the code paths. This still resulted
in a relatively small reduction overall (less than 5% in most
cases). This is, however, expected, given that our current
binary-level forward-edge CCFI policy is very simple—only
propagating function pointers passed in call arguments in a
straightforward way—and only intended to demonstrate the
practicality of implementing arbitrary forward-edge CCFI
policies in PathArmor . To examine the potential for more
sophisticated forward-edge CCFI policies, we approximated
an ideal binary-level context-sensitive forward-edge analysis
using higher-level language semantics—i.e, implemented on
top of LLVM’s Data Structure Analysis (DSA) [32].

Table 2 shows the effect of the resulting forward-edge
CCFI policy on our set of server programs. The policy
causes a significant geometric mean reduction of 22% for the
average number of indirect call targets. The reduction varies
depending on the context-sensitive function pointer resolu-
tion accuracy. For vsftpd, we obtain a reduction of 62%,
while numbers decrease for applications with more complex
pointer resolutions. We believe these results are encourag-
ing, simulating research on more sophisticated forward-edge
CCFI policies—which PathArmor can serve as a basis for.
Moreover, DSA’s flow-insensitive and unification-based de-
sign aggressively merges data-flow information, improving
speed but also resulting in overly conservative results [32]. In
addition, due to implementation limitations, DSA is known
to produce even more conservative, and thus pessimistic,
results on modern LLVM releases [2]. Thus, an updated
version of DSA (or a more precise, but also less scalable
analysis) would already likely yield substantially improved
forward-edge results.

Overall, our analysis shows that CCFI is effective in gen-
erating robust CFI invariants to defend against even sophis-
ticated control-flow diversion attacks. While attacks are still
theoretically possible—and they might be even for an ideal
CCFI solution—the adoption of context sensitivity sensibly
limits the quantity and quality of gadgets available to the
attacker. This is in stark contrast, for example, with unre-
strictedly allowing simple call-site gadgets, which have been
used to mount attacks against prior CCFI techniques [27].

5.2 Memory Usage
PathArmor instrumentation increases memory usage at

runtime. To evaluate this impact, we measured the physical

Time (ms) Cache Stats

Server Total Avg #Misses #Hits

vsftpd 24 3 9 2,283
proftpd 140 4 39 2,495
pure-ftpd 56 2 27 1,915
lighttpd 28 2 13 2
nginx 24 5 5 10
openssh 52 2 22 49
exim 100 3 40 1,871

geomean 49 3 18 213

Table 3: Path analysis time and cache statistics
gathered during the execution of our benchmarks.

memory used by instrumented applications compared to the
baseline. Deploying our kernel module alone has a constant
and marginal memory usage impact (+1 MB). Our static an-
alyzer, in turn, yields a memory usage impact proportional
to the size of the CFGs under active analysis, resulting in
an increase of +18-74 MB across all our applications.

More important is to assess the memory usage impact of
our path caching strategy, given that caching static analy-
sis results is important to minimize the performance impact
on instrumented applications. Encouragingly, our measure-
ments indicate a very small memory usage impact induced
by our in-kernel path cache, resulting in a worst-case in-
crease of only 2 KB across all our applications during the
execution of our benchmarks. This suggests that our path
caching strategy is practical even for applications which pe-
riodically issue several different sensitive function calls, and
even provides evidence that deploying a system-wide path
cache that persists across application restarts (thus elimi-
nating cache warmup-phase penalties for applications with
strong real-time guarantees) may be a realistic option.

5.3 Analysis Time
PathArmor ’s on-demand path analysis translates to in-

creased application run-time. To evaluate the resulting im-
pact, we measured the time spent in our analyzer—using
our CCFI policies—during the execution of our benchmarks.
Table 3 presents our results. The second group of columns
details the total and average analysis time measured across
all the paths analyzed. As shown in the table, the average
time spent in our analyzer to inspect each path—with little
time variations across paths—is relatively low (3 ms, geo-
metric mean). This demonstrates that our optimizations—
pre-normalizing the CFG and recording direct forward edges
in the LBR—are effective in implementing a scalable context-
sensitive path analysis even for programs with a large and
complex CFG. In addition, the total time spent in our ana-
lyzer is marginal compared to the total benchmark run time
(49 ms, geometric mean vs. several seconds). This shows
the effectiveness of our path cache which, as reported in Ta-
ble 3, was consulted thousands of times with only dozens
of misses for most applications. We elaborate on the end-
to-end impact of our on-demand path analysis strategy on
run-time performance in the next section.

5.4 Run-time Performance
To evaluate the impact of PathArmor ’s instrumentation

and path verification strategy on run-time performance, we



Normalized Run Time Event Stats

Server LBR only +LInstr +CBInstr +PathVer #LCalls #SCalls #Signals

vsftpd 1.000 1.000 1.000 1.000 35,883 42,446 208
proftpd 1.000 1.000 1.000 1.000 171,440 48,562 6
pure-ftpd 1.003 1.053 1.031 1.074 115,897 57,843 64
lighttpd 1.097 1.236 1.226 1.275 1,209,081 200,564 0
nginx 1.053 1.178 1.168 1.174 1,500,021 200,002 0
openssh 1.003 1.003 1.031 1.020 24,313 720 8
exim 1.025 1.019 1.036 1.079 67,849 4,149 50

geomean 1.025 1.066 1.067 1.085 154,831 28,229 12

Table 4: Run-time normalized against the baseline and stats gathered during the execution of our benchmarks.

  0.9

  0.95

  1

  1.05

  1.1

  1.15

  1.2

perlbench

bzip2
gcc

mcf
milc

gobmk

hmmer

sjeng
libquantum

h264ref

lbm sphinx3

geomean

N
o
rm

al
iz

ed
 r

u
n
 t

im
e

LBR only
+LInstr
+CBInstr
+JITVal

Figure 4: Run-time normalized against the baseline
for the SPEC CPU2006 benchmarks.

measured the time to complete the execution of our bench-
marks and compared against the baseline. Table 4 presents
our results. The second group of columns details the normal-
ized run-time across a number of PathArmor configurations.
The LBR only configuration refers to PathArmor solely de-
ploying its kernel module and saving/restoring the current
LBR state at application thread context switching time. As
shown in the table, this configuration introduces marginal
performance impact (2.5%, geometric mean). The overhead
is somewhat more pronounced in the +LInstr and +CBInstr
configurations (6.6% and 6.7%, geometric mean), which ad-
ditively account for our library entry point and callback in-
strumentation (respectively), but omit the path verification
step in our kernel module. The +PathVer configuration, fi-
nally, refers to the default PathArmor setup, enabling full
instrumentation and path verification using our on-demand
static analyzer. As shown in the table, our cache-aware path
analysis has relatively little impact on run-time performance
(+1.7%, geometric mean), resulting in the final average run-
time overhead of 8.5% (geometric mean).

To shed some light on the key factors contributing to the
performance overhead, we also instructed PathArmor to re-
port statistics on the run-time events of interest, as shown
in the third group of columns in Table 4. Our results con-
firm that library calls (#LCalls) are the most prevalent con-
tributing factors in the mean case, also inducing the worst-
case performance impact on lighttpd (27.3%). More ag-
gressively instrumented operations like callback invocations

#libcalls #polluted %polluted

gcc 3,373,862 13,086,146 24.24
bzip2 449 1,284 17.87
perlbench 60,495,412 253,246,721 26.16
mcf 470,597 5,705,524 75.78
milc 28,807,387 65,657,612 14.24
gobmk 299,877 1,004,581 20.94
hmmer 4,098,071 18,395,790 28.06
sjeng 11,602 176,683 95.18
libquantum 52,609,059 105,222,996 12.50
h264ref 2,449,569 12,515,117 31.93
lbm 2,626,460 5,263,308 12.52
sphinx3 48,625,654 187,711,907 24.13

geomean 1,604,689 6,595,149 25.68

Table 5: LBR pollution caused by library calls for
SPEC CPU2006. #libcalls=overall library calls,
#polluted=overall polluted LBR entries, %pol-
luted=LBR entries polluted (avg).

(marginal, not reported in table), sensitive function calls (#
SCalls) and signals (#Signals) have a less prominent impact
and can thus be better amortized over the execution.

To obtain standard and comparable performance results
across PathArmor ’s configurations, we also measured the
time to complete all the C programs in the SPEC CPU2006
benchmarks and compared against the baseline. Figure 4
presents our findings. Our results confirm the general be-
havior observed for our server applications, but the perfor-
mance overhead is generally much lower (3% in PathArmor ’s
default configuration, geometric mean). This result stems
from the lower number of library and system calls issued by
SPEC programs, as expected for standard CPU-intensive
(as opposed to syscall-intensive) benchmarks.

Overall, PathArmor imposes a relatively low run-time per-
formance impact on all the test programs considered. This
confirms that PathArmor ’s lightweight instrumentation and
cache-aware path analysis are successful in producing a run-
time overhead comparable to the most efficient (source-level
and forward-edge only) CCFI techniques [47], while enforc-
ing much more advanced context-sensitive CFI policies on
both the forward and backward edge and operating entirely
at the binary level.

5.5 LBR Pollution
As discussed in Section 3, PathArmor ’s design supports

two modes of operation: (i) stop tracking branches at the



library level, or (ii) continue tracking within libraries. The
current implementation of PathArmor uses the first mode
by default, effectively increasing the control flow context of
the protected binary during path verification. To also pro-
tect against control flow diversion triggered within library
code, PathArmor can be configured with the second mode
of operation. When running in this mode, branch tracking
is never disabled at the cost of (partially) “polluting” the
LBR from (self-contained) library code.

To evaluate the LBR pollution cost of running in full-
library mode, we configured PathArmor to compare LBR
contents right before and right after each library call and
reran the SPEC CPU2006 benchmark. Table 5 shows the
results. The average pollution rate of 25.68% overall (ge-
ometric mean) is likely acceptable in environments where
untrusted, potentially vulnerable libraries are in place.

Tracking inside libraries leads to better performance, as
this removes the jump to kernel during program-library tran-
sitions. Thus, as mentioned earlier, the results provided
in this section show worst-case performance. As discussed
above, the tradeoff of in-library tracking is increased LBR
pollution, which, however, can also be mitigated with com-
plementary techniques, such as inlining library code or using
hardware that provides a larger branch record.

6. DISCUSSION
This paper outlined and evaluated the design decisions

made in PathArmor . We now discuss evasion techniques an
attacker may employ to bypass PathArmor , analyzing their
impact and the limitations of our current solution.

6.1 History-flushing Attacks
An attacker may attempt to mount a history-flushing at-

tack to clear any traces of a ROP chain from the LBR.
History-flushing attacks previously described in the liter-
ature first execute 16 innocuous NOP-like gadgets followed
by a long termination gadget that restores argument reg-
isters and ultimately performs a security-sensitive system
call [16]. The long termination gadget bypasses heuristics
used in prior LBR-based solutions such as kBouncer [36]
and ROPecker [19], which rely on weak security invariants
based on gadget size (which they assume to be small) and
frequency.

PathArmor is not vulnerable to this simple attack, as his-
tory flushing in PathArmor is equivalent to the attacker
crafting a valid CCFI-permitted path of 16 NOP-like gad-
gets (using direct calls or indirect branches). This is much
more difficult than chaining arbitrary and CFG-agnostic
gadgets. In other words, the notion of a path in PathArmor
is stronger than that of regular (context-insensitive) CFI and
much stronger than that of kBouncer and ROPecker. Hence,
while history-flushing attacks generally remain of concern,
PathArmor ’s stronger invariants significantly raise the bar
for the attacker. For example, we have shown in Section 5.1
that it is generally much harder to maintain register states
over that many branches.

A related attack vector is to force context switches to
clear the LBR and indirectly mount a history-flushing at-
tack. This attack is also ineffective against PathArmor ,
given that, as outlined in Section 4, PathArmor stores and
restores LBR states during context switches on a per-thread
basis.

6.2 Non-control Data Attacks
An attacker may attempt to mount a non-control data at-

tack to indirectly influence the execution of existing security-
sensitive functions in the program without directly divert-
ing control flow. For example, an attacker can exploit an
arbitrary memory write vulnerability to overwrite sensitive
function arguments that are maintained in a data region.
Similarly to all the existing (and even ideal) CFI solutions,
PathArmor cannot protect against these and other data-
only attacks. Unlike existing whole-program CFI solutions,
however, PathArmor ’s history-based detection strategy would
also allow an attacker to craft a ROP-based memory write
primitive before jumping to the beginning of a valid exe-
cution path leading to a security-sensitive function. Never-
theless, since ROP is not necessary to perform an attacker-
controlled memory write and arbitrary memory write vul-
nerabilities are actually very common, we do not believe this
is a limiting factor within our threat model. We also note
that binary-level defenses against non-control data attacks
are explored in orthogonal work [44].

6.3 Endpoint-pruning Attacks
An attacker may attempt to evade detection by avoiding

calls to sensitive endpoints recognized by PathArmor . This
is because, similarly to prior endpoint-driven solutions [19,
36], PathArmor enforces security invariants only at prede-
termined sensitive function calls. Assuming PathArmor ’s
default configuration, such endpoint-pruning attacks require
the attacker to find alternative means to affect the system
environment without relying on system calls such as exec,
and mprotect. While this is generally of concern depend-
ing on the goals of the attacker, PathArmor allows users to
configure the list of sensitive endpoints according to their
needs. For programs in which our default configuration is
not sufficient to provide the required guarantees, users can
custom tune the list of endpoints and balance security and
run-time performance.

Nevertheless, we believe that PathArmor ’s default con-
figuration alone drastically reduces the freedom of an at-
tacker. Although ROP may still be used to perform arbi-
trary Turing-complete computations, without the ability to
execute core security-sensitive system calls, the impact on
the system remains limited.

6.4 Instrumentation-tampering Attacks
An attacker may attempt to abuse the instrumentation

employed by PathArmor ’s default mode of operation (which
disables branch tracking in library code) to alter the branch
record. This attack would, however, fail to circumvent PathAr-
mor ’s detection strategy. Consider the scenario wherein an
attacker sets up a ROP chain that invokes the ioctl sys-
tem call with a dedicated PathArmor-specific argument to
tamper with the branch-tracking instrumentation. Depend-
ing on the request type, this attack will result in two pos-
sible outcomes. In the case of a CALLBACK_EXIT request,
PathArmor ’s kernel module will immediately verify the cur-
rent LBR state (see Section 3.3.3) and detect CCFI invari-
ants violations caused by the originating ROP-based control
flow. In the case of a LIB_ENTER request, in turn, PathAr-
mor ’s kernel module will immediately return control to user-
land after disabling branch tracking, allowing the attack to
resume in LBR-free execution. As soon as the attacker in-
vokes a security-sensitive function, however, PathArmor ’s



kernel module will perform verification as normal. At that
point, the LBR state will still reflect the branch record gen-
erated by the attacker’s original ROP chain (leading to the
previously issued ioctl system call), resulting, again, in
PathArmor detecting the attack. Note that an attacker
can also attempt to later re-enable branch tracking via a
LIB_EXIT operation, but a PathArmor-legal path of 16 in-
direct branches is then required to clear any traces of the
original ROP attack—essentially equivalent to the history-
flushing attacks discussed earlier.

7. RELATED WORK
CFI was originally proposed by Abadi et al. [8]. The orig-

inal (strict) CFI proposal incurs high overheads. This has
lead to a myriad of proposals for practical CFI implementa-
tions which realize better performance by strategically trad-
ing off security guarantees. There are two broad branches of
CFI implementations: (i) Control-Flow Graph-based (CFG-
based) CFI, and (ii) Heuristic-based CFI.

CFG-based CFI focuses on enforcing properties of the
CFG. Compiler-based approaches inherently require source
to resolve (indirect) control transfers that are considered le-
gitimate [8, 9, 12, 22, 25, 33, 49, 52]. Due to the availability
of source information, these approaches are usually able to
derive accurate CFGs. Binary-based approaches, while po-
tentially less accurate (i.e., based on an overapproximated
CFG), have the advantage of being applicable to legacy pro-
grams where the source code is not available [29,50,53–55].
Recently, modular CFI approaches have also been proposed.
These are a variant of CFG-based approaches, which resolve
part of the CFG at runtime, providing greater flexibility for
dynamically computed targets [34,35,37].

In contrast to CFG-based CFI, heuristic-based CFI does
not require a CFG to enforce integrity. Such approaches
include kBouncer [36] and ROPecker [19], which seek to de-
tect anomalous control patterns at sensitive program points.
Such approaches are easy to deploy, but are also relatively
easy to circumvent, due to their heuristics [27].

Prior work explored devastating attacks against both prior
CFG-based and heuristic-based CFI, using combinations of
individually legal control transfers [16, 24, 27]. PathArmor
enables stronger defenses against such attacks by efficiently
enabling context-sensitive CFI policies over paths to sen-
sitive functions and disallowing many unnecessary forward
and backward edges permitted by prior context-insensitive
CFI policies (e.g., backward edges to arbitrary call-site gad-
gets, a common attack target [27]).

In prior fine-grained CFI techniques, context-sensitive poli-
cies have been explored only for backward edges and only
using shadow stacks [11,18,20,21,23,25,38,39,43,51].

In contrast to the run-time shadow stack approach, PathAr-
mor resolves backward edges using a hardware-supported
context-sensitive static analysis over the interprocedural CFG
and caches the results at sensitive points in the program,
yielding improved performance and security against tam-
pering attacks. Static context-sensitive backward edge res-
olution strategies have been explored before for security,
but only to improve the accuracy of IDS models based on
syscall sequences [48]. PathArmor , in contrast, shows that
enforcing context-sensitive CFG-based policies both on the
forward and backward edge at a much finer level of gran-
ularity (i.e., control-flow transfers for CFI) is a realistic
and efficient option thanks to emerging hardware features.

This result contrasts claims in prior work, which, while ac-
knowledging their security advantages, generally dismissed
context-sensitive CFI policies as impractical for real-world
adoption [8].

Other approaches rely on hardware-supported branch trac-
ing to improve CFI performance. Similar to PathArmor ,
kBouncer [36] and ROPecker [19] rely on Intel’s LBR to effi-
ciently implement branch tracing, but only to enforce heuris-
tic CFI policies which can be easily circumvented [16]. CFI-
Mon [50] can enforce hardware-supported CFG-based CFI
policies, but relies on the significantly slower Intel BTS [36]
and yields high detection latencies, potentially missing at-
tacks [19]. Unlike PathArmor , none of these approaches at-
tempt to enforce context-sensitive CFI policies over hardware-
monitored control transfers.

Concurrently with our work, Schuster et. al. have devel-
oped the COOP attack [40], and show that CFI solutions
that do not precisely consider object-oriented semantics in
C++ programs can generally be bypassed. While our work
mainly focuses on C rather than C++ programs, we believe
CCFI can strengthen forward-edge invariants (subject to the
precision of the underlying data-flow analysis) in modern
vtable protection techniques in mainstream compilers [47],
raising the bar against COOP-like attacks.

The recent Control-Flow Bending (CFB) [15] evaluates
the general effectiveness of even ideal (context-insensitive)
CFI solutions and evidences their limitations against so-
phisticated CFG-aware attacks. Compared to regular CFI,
CCFI makes such attacks harder, given that entire paths
(rather than individual CFG edges) are checked for validity.
CFB attacks have already been shown to be more difficult
against CFI solutions that are complemented by a shadow
stack [15]. Compared to such solutions, CCFI does not rely
on in-process run-time information and can enforce context-
sensitive invariants on both forward and backward edges,
thereby providing improved defenses against CFB attacks.

8. CONCLUSION
While Context-sensitive CFI (CCFI) can significantly en-

hance the security of state-of-the-art defenses against control-
flow diversion attacks, it has long been perceived as ineffi-
cient and impractical for real-world adoption. This paper
has shown that the three fundamental challenges towards
fast and practical CCFI—efficient path monitoring, analy-
sis, and verification—can indeed be effectively addressed in
a realistic way on commodity platforms.

To substantiate our claims, we implemented PathArmor ,
the first binary-level CCFI solution that efficiently enforces
context-sensitive CFI policies on both backward and for-
ward edges. PathArmor addresses all the CCFI fundamen-
tal challenges using low-overhead hardware registers to track
control edges, a scalable on-demand and constraint-driven
context-sensitive static analysis, and a path cache accessed
at sensitive program points. PathArmor yields comparable
or better performance than prior context-insensitive CFI so-
lutions, while enforcing much stronger context-sensitive in-
variants and providing a general framework to implement
arbitrarily sophisticated CCFI policies.
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