
HCFI: Hardware-enforced Control-Flow Integrity

Nick Christoulakis
FORTH

christoulak@ics.forth.gr

George Christou
FORTH

gchri@ics.forth.gr

Elias Athanasopoulos
VU University, Amsterdam

i.a.athanasopoulos@vu.nl
Sotiris Ioannidis

FORTH
sotiris@ics.forth.gr

ABSTRACT
Control-flow hijacking is the principal method for code-reuse
techniques like Return-oriented Programming (ROP) and
Jump-oriented Programming (JOP). For defending against
such attacks, the community has proposed Control-flow In-
tegrity (CFI), a technique capable of preventing exploitation
by verifying that every (indirect) control-flow transfer points
to a legitimate address. Enabling CFI in real systems is not
straightforward, since in many cases the actual Control-flow
Graph (CFG) of a program can be only approximated. Even
in the case that there is perfect knowledge of the CFG, en-
suring that all return instructions will return to their actual
call sites, without employing a shadow stack, is questionable.
On the other hand, the community has expressed concerns
related to significant overheads stemming from enabling a
shadow stack.

In this paper, we acknowledge the importance of a shadow
stack for supporting and strengthening any CFI policy. In
addition, we project that implementing a full-featured CFI-
enabled Instruction Set Architecture (ISA) in actual hard-
ware with an in-chip secure memory can be efficiently carried
out and the prototype experiences negligible overheads. For
supporting our case, we implement HCFI by modifying a
SPARC SoC and evaluate the prototype on an FPGA board
by running all SPECInt benchmarks instrumented with a
fine-grained CFI policy. The evaluation shows that HCFI
can effectively protect applications from code-reuse attacks,
while adding less than 1% runtime overhead.

1. INTRODUCTION
Exploitation of modern software is undoubtedly still pos-

sible, despite many mitigation techniques that have been
enabled in production systems. Although a simple stack
smashing [26] is unlikely to be sufficient for compromising a
program due to non-executable data protection (DEP) [4],
advanced exploitation techniques, based on code reuse, com-
monly known as Return-Oriented Programming (ROP) [31]
and Jump-Oriented Programming (JOP) [7], are so powerful

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16 March 9-11, 2016, New Orleans, LA, USA
c© 2016 ACM. ISBN 978-1-4503-3935-3/16/03.. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857735

that can potentially take advantage of any vulnerability and
transform it to a functional exploit. Code randomization
techniques [23,28,30,37] attempt to make code reuse harder
by shuffling the location of the code to be reused, but it has
been demonstrated that even a simple information leak can
reveal all of the process’ layout and essentially bypass any
randomization scheme [34].

Therefore, for fighting software exploitation, the commu-
nity seeks protection schemes that are based on core prin-
ciples. One promising direction is based on the observation
that modern exploits introduce control flows that are not
part of the program’s Control-flow Graph (CFG). Control-
flow Integrity (CFI) [3] suggests that a running program
should exhibit only the control flows that are part of the
program’s original CFG as expressed by its source code. Es-
sentially, CFI mandates that any indirect branch should not
be possible to target the address of any instruction in the
program, but rather be constrained in an allowable set of
addresses that have been a priori determined. For exam-
ple, consider that in principle a return instruction should be
only able to transfer control to the call site responsible for
the associated function call.

CFI, although a strong principle, has still two open issues
related to the technique’s accuracy and performance. As far
as accuracy is concerned, it is not always trivial to compute
the program’s CFG. This is mainly because the source code
might not be always available, dynamic code might be in-
troduced at run-time [6], and heavy use of function pointers
can lead to inconclusive target resolution. This problem has
led researchers to develop CFI techniques that are based on
a relaxed approximation of the CFG [41,42], also known as
coarse-grained CFI. Unfortunately, coarse-grained CFI has
been demonstrated to exhibit weak security guarantees and
it is today well established that it can be bypassed [20].

Since approximation of the ideal CFG through code anal-
ysis does not have sound protection, at least for protecting
backward edges, the community has suggested the use of a
shadow stack [14]. A shadow stack is secure memory where,
during a function call, the call site is saved. Once the func-
tion is to return, the information stored in the shadow stack
is checked with the return address stored in the actual stack;
in case there is a mismatch, a violation is recorded and the
running process is halted. There is much criticism about
the use of a shadow stack due to performance implications.
However, it was recently demonstrated that even an ideal
CFI implementation, without the use of a shadow stack, is
vulnerable [10]. This is mainly because any CFG contains
functions (e.g., memcmp) which are called by many different

http://dx.doi.org/10.1145/2857705.2857735

locations of the program and essentially allow the attacker
to be flexible in creating call-preceded chains of gadgets for
finally exploiting the program. It is thus vital for any CFI
implementation to employ a shadow stack.

In this paper, we acknowledge that the use of a shadow
stack is mandatory for any practical CFI deployment. We
further attempt to quantify the performance of CFI and
demonstrate that the technique can be applied to real sys-
tems with practically negligible overhead. For proving our
case, we present HCFI, a full-featured hardware implemen-
tation of CFI. We extend an existing Instruction Set Ar-
chitecture (ISA), with instructions dedicated for CFI and
we deploy shadow memory inside the core. We modify a
SPARC SoC and evaluate the prototype on an FPGA board
by running all SPECInt benchmarks instrumented with the
additional CFI-related instructions. The evaluation shows
that HCFI can effectively protect applications from code-
reuse attacks, while adding less than 1% runtime overhead.

Compared to similar hardware implementations, such as
HAFIX [15], HCFI is (i) complete, since it protects both for-
ward and backward edges, (ii) faster, since the experienced
overhead is on average less than 1%, and (iii) more accurate,
since it employs a full-functional shadow stack implemented
inside the core. Especially, as far as shadow memory is con-
cerned, HCFI uses a novel system for supporting multiple
recursive calls. Each time a return address is to be saved in
the secure memory it is checked with the top of the shadow
stack and if the address is matched, indicating there is a re-
cursive call, no additional memory is wasted. This dramat-
ically simplifies the design and reduces the space require-
ments, but implies that a recursive call can return to its call
site immediately from any depth, thus violating a perfect
CFI policy. However, we anticipate that this policy relax-
ation has not severe security implications, since system calls
and sensitive functions are not recursive and they do not call
recursive functions (i.e., hijacking a recursive function called
by a sensitive system call for jumping to the sensitive call site
is not possible). Furthermore, in terms of completeness, we
argue that HCFI is the most rich hardware implementation
of CFI so far, supporting many problematic cases (such as
setjmp/longjmp), which we discuss thoroughly in Section 3.

1.1 Contributions
This paper contributes the following.

1. We design, implement, and evaluate HCFI, a full-featured
ISA for supporting processes hardened with CFI. The
prototype is based on extending a SPARC SoC and it
includes a hardware implementation of a shadow stack.

2. HCFI is complete and accurate. It protects both for-
ward and backward edges, and the shadow stack im-
plementation can handle recursion of arbitrary depth.

3. HCFI has practically negligible overhead. We evaluate
HCFI with all SPECInt benchmarks and we record a
runtime overhead of less than 1% on average, which, to
the best of our knowledge, stands for the first hardware
implementation for full CFI support with low cost.

4. HCFI is policy agnostic and can deal with all idioms
that usually interfere with hardening indirect jumps,
such as the use of longjmp and setjmp. For the pur-
pose of presenting HCFI in this paper we enable a fine-
grained CFI policy with shadow-stack support.

Normal
Execution

Flow

Indirect
Call

State

Label RegisterReturn
Address

Label
Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Label
Verification

Control
Flow

Violation

Other Instruction

Valid Label

Invalid
Label

Figure 1: Indirect Call States. A SetPCLabel instruc-

tion is received, the appropriate memory modules are

set, and the core enters a state where only CheckLabel

instructions are accepted. Once a CheckLabel instruc-

tion is received, the labels are compared and execution

returns to its normal flow.

1.2 Organization
This paper is organized as follows. In Section 2 we discuss

the generic architecture of HCFI and in Section 3 we thor-
oughly present the technical details for implementing the
prototype. We evaluate HCFI in terms of security in Sec-
tion 4 and in terms of performance in Section 5. We discuss
various aspects of our current and future work in Section 6.
We review related work in Section 7 and, finally, we conclude
in Section 8.

2. HCFI ARCHITECTURE

2.1 Control-Flow Integrity enforcement
Control-flow Integrity (CFI) aims at guaranteeing that

the execution flow adheres to the path determined by the
control-flow graph of the program. The control flow of a pro-
gram can be manipulated either on the forward-edge, when
the target of an indirect jump is altered, or on the backward-
edge, when a saved return address has been changed. For
forward-edges we ensure that an indirect jump can target
only a function entry with the appropriate label that is gen-
erated during the CFG extraction. For backward-edges we
validate that the function’s return instruction targets the
address of the original call site(Call-Ret pair). A more de-
tailed discussion follows.

2.1.1 Forward-edge
The forward-edge is handled as discussed in the original

CFI proposal [3]. Every indirectly called function is hard-
coded with a label on its entry point. Before the indirect
function call, the function’s label is compared to a label as-
signed to the call site. Our approach differs in that we set
the label before the indirect call executes, while the valida-

Normal
Execution

Flow

Return
Address

Validation

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Control
Flow

Violation

Figure 2: Return States. A CheckPC instruction is re-

ceived, the Program Counter is compared with the top

value of the stack and the execution continues normally.

tion takes place immediately after function entry. Before the
indirect control transfer, a SetPCLabel instruction, placed
on the delay slot(described in subsection 3.2), stores a label
in a non memory-mapped latch that resides inside the core.
On the function entry, a CheckLabel instruction verifies that
the label equals the one stored in the latch. If the compar-
ison fails, a control-flow violation is detected, an exception
is raised, and the system handles it appropriately.

2.1.2 Backward-edge
For the backward edges, a non memory-mapped stack,

which also resides within the core, is deployed. The concept
of a shadow stack is thoroughly studied in the literature [3,
10, 14]. The general concept is based on the notion that
a function’s return address points to the instruction lying
directly below the call site. This is not always the case as
it is common that a function does not return to the original
call site.

The shadow stack of HCFI is implemented as follows. Be-
fore a call instruction executes, a copy of the return address
is pushed to the shadow stack. When the callee function
returns, the return address is compared with the one on the
top of the shadow stack. If they are not equal, a control-
flow violation is detected and handled appropriately by the
system.

Notice that every direct call instruction is paired with a
SetPC instruction placed on its delay slot. The SetPC in-
struction pushes the current Program Counter to the shadow
stack module. After the callee function returns, a CheckPC
instruction, placed in the delay slot of the return instruc-
tion, checks that the computed return address is equal with
the address stored in the shadow stack incremented by four
(one instruction below the SetPC). If the check fails, a hard-
ware exception is raised, which is handled by the supervis-
ing firmware. An alternative way to process a mismatch
between the shadow stack and the main stack, is to silently
force the address obtained from the shadow stack as the re-
turn address. Aforesaid proposition can potentially enhance
our architecture with fault tolerance capabilities, since any

Normal
Execution

Flow

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Save top
Shadow Stack

Index

Setjmp
Labels

10

….

Current
Index

label

Figure 3: Setjmp Finite State Machine. An SJCFI in-

struction stores the current state of the Shadow Stack.

tampering of the return address would be rectified by the
hardware.

2.2 Architecture Overview
HCFI is based on a series of modifications of Leon3 [18]

core’s pipeline. The architecture consists of unmapped shadow
memory elements, more specifically a shadow stack, a shadow
memory array, a shadow register, and six dedicated instruc-
tions which function upon the shadow memory elements.
The shadow stack is utilized in enforcing backward-edge
CFI through the detection of control-flow changes caused
by arbitrary return address modifications, e.g. buffer over-
flows. Likewise, a single shadow register is used for enforc-
ing forward-edge CFI, effectively protecting the execution
flow from vulnerable function pointers. The shadow mem-
ory array is used for assisting setjmp/longjmp support. To
access and utilize the shadow memory blocks, we extended
the SparcV8 [1] instruction set with six instructions.

2.3 ISA Extension
We extended the SparcV8 ISA with six instructions de-

signed to provide CFI functionality to the core.

SetPC: Paired with direct call instructions. The SetPC in-
struction is placed in the delay slot of the call instruction it
is paired with. It pushes the currently executing Program
Counter (PC) to the shadow stack. Also, if the next instruc-
tion is a CheckLabel, the SetPC instruction suppresses the
CFI violation that would occur, since the Label Register’s
value has not been initialized, yet. This functionality is use-
ful in cases where an indirectly called function is also called
directly.

SetPCLabel: Paired with indirect call instructions. This
instruction is placed in the delay slot of the indirect call it
is paired with. Its 18 Least Significant(LS) bits carry the
label used to validate the indirect call target. As with the
SetPC instruction, the current Program Counter is pushed
to the shadow stack. At the same time, the 18 LS bits are
stored in the Label Register to be used later for validation.
If the next instruction executed is not a CheckLabel, a CFI
violation occurs.

Normal
Execution

Flow

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Shadow Stack
Sync
State

Setjmp
Labels

10

….

Stored
Index

label

Long jump
State

Any
Instruction

Figure 4: Longjmp Finite State Machine. An LJCFI in-

struction puts the core in a state waiting for an SJCFI

instruction. The next SJCFI will not store the environ-

ment but restore it to the state that it was the last time

an SJCFi instruction was executed on its own.

CheckLabel: Placed on the entry point of a function that
is found during instrumentation to be called indirectly. It
is the only instruction that can be legally executed after a
SetPCLabel. Its 18 LS bits carry the label used to validate
the indirect call target. It compares the label carried on its
18 LS bits with the value stored in the Label Register. If the
labels match, the register is reset and the execution contin-
ues normally, otherwise a CFI violation is detected. Since
the Label Register is zeroed out after every CheckLabel, and
no function is assigned zero as a label, the Label Register
cannot be reused without being set again.

CheckPC: Paired with return instructions. This instruc-
tion is placed in the delay slot of the return instruction it is
paired with. It compares the program counter of the next
instruction executed (after the branch takes place) with the
top of the shadow stack. If PC equality is confirmed, the
shadow stack is popped and the execution continues. Oth-
erwise, a CFI violation occurs.

2.4 Shadow Stack Incompatibilities
Backward-edge control-flow integrity relies on the Call-

Ret pair model of programs. That means that each time a
return instruction jumps to an address different than the one
it was called from, the Call-Ret pair model is violated which
leads to a CFI violation. Unfortunately, there are cases that
Call-Ret pairs are violated in a legitimate way.

2.4.1 Setjmp/Longjmp
The most common violation is setjmp/longjmp. When a

longjmp occurs, the original stack may unwind by several
frames. Standard solutions suggest unwinding the shadow
stack till it is empty or a match is found. Such an approach
would impose a greater performance overhead in our design.
In the proposal by Davi et al. [15], a longjmp would not
cause a control-flow violation but the intermediate labels
would remain active, significantly relaxing CFI. We over-
come these problems by using dedicated instructions for

setjmp/longjmp support, without sacrificing any security or
performance.

Additionally, some designs [27] propose popping the shadow
stack till a valid return address is found or it is empty, caus-
ing additional delay cycles. Furthermore, unwinding the
shadow stack can lead to inconsistencies. The address re-
quired could exist more than once in the shadow stack, and
since the hardware could not blindly know which of the ad-
dresses is the correct call site, it could settle on the wrong
one, causing a violation later in the execution. Other pro-
posals do not support setjmp/longjmp functionality and any
such jump would be perceived as a control-flow violation.

In order to achieve on cycle synchronization between the
shadow stack and the normal stack, we decided on the ad-
dition of two dedicated instructions and a shadow memory
array. Those new instructions are paired with the call in-
structions to the setjmp and longjmp functions themselves.

SJCFI: The first one, SJCFI, is paired with the setjmp func-
tion. It is placed two instructions below the call to setjmp -
the instruction to which a call to setjmp would return to. It
carries a unique label on it 8LS bits - different from the la-
bel used for forward edge enforcement. Much like setjmp, it
serves two purposes, (i) it sets the environment to support a
longjmp, and (ii) acts as a landing point for the jump itself.

In the first case, once a setjmp returns, the first instruction
executed would be SJCFI. The label is used as an index to
the new memory element. During SJCFI’s execution, the
index of the top element of the shadow stack is stored in the
new memory component using the label as an index. This
allows pairing this particular landing point to the current
state of the shadow stack. Even though the addresses remain
in the shadow stack, they cannot be exploited by an attacker
as the only way to use them would be to raise the index,
which cannot happen without overwriting the addresses with
correct ones.

SJCFI also acts as a landing point for a longjmp. Since
it is placed two instructions below the call to setjmp, and
a longjump will return to its equivalent setjmp call site, it
will be the first instruction executed after such a jump.

For SJCFI to support long jumps, an LJCFI instruction is
assumed to have been already executed. In this case, SJCFI,
instead of reading the index of the stack and writing it to
the new memory element, reads the index from the memory
element (once again using its label) and sets the stack to it.
Since the index of the shadow stack corresponds with the
stack frame once again, execution and CFI enforcement can
continue normally. The next SJCFI instruction executed
will use the first functionality unless another LJCFI was
executed before that.

LJCFI: LJCFI instruction is only used to signify that a
longjmp is underway. It is placed in the delay slot of a
longjmp call and flags that a longjmp is executed. After the
longjmp function is executed, the program counter should
point to an SJCFI instruction, which will use the second
of its functionalities, synchronizing the shadow stack and
clearing the longjmp state flag.

The functionality of those two instructions is graphically
represented in figures 3 and 4.

2.4.2 Tail-Call Elimination
Another case of Call-Ret pair violation is tail call elimi-

nation. As shown in figure 7, before calling bar, foo’s return

<function_1>

0x0 : save %sp, -42, %sp
0x4 : call 100 ! function_2
0x8 : nop
0x10 : . . .
0x14 :

<function_2>

0x100 : save %sp, -90, %sp
0x104 : . . .
0x138 : ret
0x13C : restore

return

call

Figure 5: SparcV8 assembly - direct function call with-

out CFI instrumentation.

<function_1>

0x0 : save %sp, -42, %sp
0x4 : call 100 ! function_2
0x8 : setpc
0xC : . . .
0x10 :

<function_2>

0x100 : save %sp, -90, %sp
0x104 : . . .
0x134 : restore
0x138 : retl
0x13C : checkpc

return

call

Figure 6: SparcV8 assembly - direct function call with

CFI instrumentation. A SetPC instruction is placed on

the delay slot of the call instruction, and a CheckPC on

the delay slot below the return. The restore instruction

is pushed above the return and the return instruction

changes to account for it.

address (stored inside the o7 register) is moved to global reg-
ister g1. When the call instruction is executed, register o7
will be overwritten with the current program counter (0x20)
which serves as bar function’s return address. Finally, in the
delay slot of the call instruction, the return address of foo is
restored in register o7. The effect of the above code snippet
is that bar function will return to foo function’s call site.
In our design, this optimization renders the shadow-stack
inconsistent with the main stack. Thus, this particular opti-
mization has to be disabled in order to run the benchmarks.
Adding support for this optimization is possible, by sim-
ply not instrumenting the eliminated call site, though that
might pose a great security concern.

2.5 Recursion Support
The memory available to the shadow stack is finite and

implemented statically inside the core, where there is no
dynamic memory allocation. Therefore, for supporting re-
cursion, additional features should be implemented.

Before the SetPC and SetPCLabel instructions push the
current PC to the shadow stack, the stack is topped and the
two addresses are compared. If the addresses are different,
the new address is pushed. Otherwise, the address is not

<foo>

0x0 : . . .
0x10 : mov %o7, %g1
0x14 : call bar
0x18 : mov %g1, %o7
0x1C : . . .

Figure 7: SPARC V8 tail call elimination example. The

calling function (foo) replaces the return address of the

callee function (bar) with its own. Bar will return to the

function that called foo, skipping it.

pushed, but the current index of the shadow stack is marked
as recursive on a separate 128*1 bitmap.

During the CheckPC execution, if the address currently
being compared has the recursion bit activated, it is not
popped from the stack. If the address comparison results
in a mismatch and the top address is recursive, the top ad-
dress is popped and the PC is compared with the next one.
If the addresses match, execution continues normally and,
if the (now) top address is not marked as recursive, it is
popped. Otherwise, should the comparison again result in a
mismatch, the corresponding violation is raised.

2.6 Instrumentation
Instrumentation takes place at the assembly-level of C

programs using a Python script (about 200 LoCs). We as-
sume that input programs are products of standard C com-
pilers (such as, GCC and Clang), and they do not include
custom assembly idioms. Instrumentation by no means is
limited to C-compiler generated assembly. In fact, any as-
sembly code is instrumentable as long as a Call-Ret-like
model is sustained.

In figures 5 and 6 we show the instrumentation of a direct
call in the SparcV8 assembly language. The logic behind
the instrumentation is fairly simple as it consists of pairing
every call and return with a CFI instruction. For calls, a
SetPC instruction is added below them, and for returns, a
CheckPC.

The new instructions were designed to take advantage of
the delay slot below branches in the SparcV8 architecture.
With that in mind, any instructions residing in the delay
slot must be moved out of the slot, before the branch. The
most usual case of instructions that need to be moved are
restore instructions as they almost always reside in the delay
slot of their respective return instructions.

Since the restore instruction changes the focus of the reg-
ister window, we must compensate for it moving before the
return instruction. The ret instruction expects to find the
return address in register i7, but because the register win-
dows have shifted, the appropriate value is now stored in
register o7. Thankfully, the Sparc assembler provides an-
other instruction with this case in mind, retl.

In Figures 8 and 9 we show the instrumentation of an
indirect function call in the SparcV8 assembly language.
The backward-edge components remain essentially the same,
with the only modification being that the SetPC instruction
is switched with a SetPCLabel instruction. But now, the

<function_1>

0x0 : save %sp, -42, %sp
0x4 : sethi %hi(0x0), %g1
0x8 : or %g1, 0x100, %g1
0xC : call %g1
0x10 : nop
0x14 : . . .
0x18 :

Calculation
of function_2

address

<function_2>

0x100 : save %sp, -90, %sp
0x104 : . . .
0x134 : ret
0x138 : restore

return

call

Figure 8: SparcV8 indirect function call without CFI in-

strumentation. The address in loaded in a register which

is used to perform the indirect call. Otherwise, the call

performs similarly to the direct call.

<function_1>

0x0 : save %sp, -42, %sp
0x4 : sethi %hi(0x0), %g1
0x8 : or %g1, 0x100, %g1
0xC : call %g1
0x10 : setpclabel 0xc0de
0x14 : . . .
0x18 :

<function_2>

0x100 : checklabel 0xc0de
0x104 : save %sp, -90, %sp
0x108 : . . .
0x134 : restore
0x138 : retl
0x13C : checkpc

call

return

Figure 9: SparcV8 indirect function call with CFI in-

strumentation. A SetPCLabel instruction is placed on

the delay slot below the indirect call. A CheckLabel in-

struction is placed on the entry point of the indirectly

called function. Finally, a CheckPC instruction is placed

in the delay slot of the return instruction.

forward-edge components are also in use. Specifically, Set-
PCLabel, storing the hard-coded label for later comparison,
and the CheckLabel instruction, placed on the function en-
try point, performing said comparison.

3. HCFI PROTOTYPE IMPLEMENTATION
In this section we describe the HCFI prototype imple-

mentation, we present the results of the hardware synthesis
using an Virtex 6 [40] FPGA board, in terms of additional
hardware needed compared to the unmodified processor, and
finally we discuss how the proposed system can be easily
ported to other architectures and systems.

3.1 Introduction to the Leon3 Softcore
We modified the Leon3 SPARC V8 processor [18], a 32-bit

open-source synthesizable processor, to implement the secu-
rity features required for a hardware-based CFI support. All

hardware modifications require less than 500 lines of VHDL
code. Leon3 uses a single-issue, 7-stage pipeline. Our im-
plementation has 8 register windows, an 16 KB 2-way set
associative instruction cache, and a 16 KB 4-way set asso-
ciative data cache.

3.2 Delay Slot
In the SparcV8 architecture, as with many other RISC

ISAs, exists the concept of a delay slot. In those architec-
tures, any instruction directly below a branch is always ex-
ecuted as if before it, regardless of the result. Subsequently,
the instruction slot below a branch is called a delay slot.
HCFI was built with that mechanism in mind, though it is
by no means a prerequisite.

3.3 Memory Element Additions
The implementation of the prototype presented in this pa-

per requires several memory elements. Specifically, a dedi-
cated 32 bit register, a dedicated 128*32 bit stack, a bitmap
of 128 bits, and a dedicated 128*8 bit memory module. All
memory elements are only accessible using the new CFI in-
structions of the prototype.

The register (Label Register) is used in storing the label
used for indirect jump verification - forward edge. The stack
(Shadow Stack) is used in storing the return addresses of
the functions currently executing, so as to add a measure
of redundancy and validate return instructions - backward
edge. The bitmap holds the recursion bit for the return
addresses of the Shadow Stack. The third memory module
is used to provide setjmp/longjmp support.

All four memory elements are are not memory-mapped,
and thus are only accessible through the use of the CFI
instructions, while there is no interference with additional
peripherals or supervising software. Since the memory el-
ements do not rely on the data cache, or use any existing
buses, they do not encumber the core’s memory bandwidth.
Also, since the elements do not reside in RAM, they can
be accesed with just one cycle of delay for both reads and
writes.

3.4 Leon3 Pipeline Modifications
The modifications required for supporting the new in-

structions, discussed in Section 2, to the core are exclu-
sive to the pipeline. The design relies on a new process,
the hardware equivalent of a software thread, for avoiding
heavy modifications to the critical path of the pipeline. The
process contains all the CFI functionality, while the Leon3
pipeline is only modified to handle the input and output for
the process; such as the current and next Program Counter,
signals indicating annulled instructions, exceptions, and the
instructions themselves. We discuss here how each instruc-
tion is implemented.

SetPC: The basic function of the SetPC instruction is to
push the current PC to the Shadow Stack during the mem-
ory stage of the execution. Additionally, during the exe-
cution stage of the pipeline, it sets a flag that is used to
suppress the Invalid Label violation (discussed in subsec-
tion 3.5) that occurs if the next instruction executed is a
CheckLabel. If the next instruction is not in fact a Check-
Label, the flag is reset. This implementation allows a func-
tion called directly to be called indirectly, as well. To avoid
an exception, the violation must be suppressed, as the Label
Register is not currently set.

For supporting recursion, the instruction first tops the
stack during the register access stage of the execution. If the
address is the same as the current PC, it does not push it to
the stack but instead marks the current index as recursive.
Otherwise, it performs as previously described.

SetPCLabel: This instruction also pushes the current PC
to the Shadow Stack during the memory stage and supports
recursive calls as SetPC does. Additionally, SetPCLabel sets
the Label Register to the value carried in its 18 LS bits. The
value is extracted from the instruction during the decode
stage and is set to the Label Register during the memory
stage of the execution. Finally, it forces a check that ensures
that the next instruction executed is in fact a CheckLabel.
If the next instruction is not a CheckLabel, then a violation
is raised that will lead to an exception during the violating
instruction’s exception stage.

CheckPC: The CheckPC instruction serves a simple pur-
pose. During the register access stage, it tops the Shadow
Stack, increments the value by 4 (one instruction below the
SetPC), and compares the result with the next Program
Counter (nPC). If equality is confirmed, then the stack is
popped. If the result is not the expected value, a violation is
raised leading to an exception during the exception stage.

Much like the SetPC and SetPCLabel instructions, if re-
cursion optimization is in place, the functionality shifts. If
the top address in the stack is marked as recursive, it is not
popped, so that it can be used again later. If the address
comparison results in a mismatch and the top address is
marked as recursive, the stack is popped and another com-
parison is performed two cycles later, during the memory
access stage. If the new comparison holds, execution con-
tinues normally and, if the top address is not recursive, it is
popped. If the comparison fails again, a mismatch violation
is raised during the exception stage.

CheckLabel: This instruction, much like the SetPCLabel
instruction, carries a label on its 18 LS bits. This label
is extracted during the decode stage of the execution, and
compared to the label stored in the Label Register during
the execution stage. If label equality is not confirmed, then
a violation is raised leading to an exception. The Label
Register is reset during the memory stage.

The CheckLabel instruction requires that a SetPC or Set-
PCLabel instruction was the last instruction to execute.
Otherwise the Label Register is not set and its contents are
zeroed. This leads to a violation, as no function is assigned
zero as a label, unless a SetPC is the last instruction exe-
cuted, which suppresses the violation.

LJCFI: LJCFI raises a flag to signify that a longjmp is
underway. It does not carry any labels or uses any memory
beyond the signal used for the flag.

SJCFI: SJCFI carries a label in its 8LS bits that is ex-
tracted at the decode stage. During the execution stage, de-
pending on whether the flag is set by LJCFI, it either reads
the top value’s index from the Shadow Stack or retrieves the
new index from the new memory element, using the label as
a pointer to it. Finally, during the memory stage, again
depending on the flag, it either stores the Shadow Stack’s
index to the memory element with the label as a pointer, or
it sets the index retrieved from the new memory element to
the Shadow Stack.

3.5 Violations
The various problems and errors detected during execu-

tion are summed in the following violations:

Label Mismatch: Raised when the label stored in the La-
bel Register is not equal to the label carried by the Check-
Label instruction. It can also mean that the Label Register
has not been set at all. This is a forward-edge CFI violation.

PC Mismatch: Raised when a CheckPC instruction de-
tects tampering on the return address. The address stored
in the Shadow Stack is not the address to which the return
instruction jumped. This is a backward-edge CFI violation.

Flow: Raised when the instruction executed after a Set-
PCLabel is not a CheckLabel. The indirect call targeted
a function that has not been found to be a valid indirect
target during instrumentation. This is a forward-edge CFI
violation.

Empty: Raised when a CheckPC instruction tries to vali-
date a return address while the stack is empty. More return
addresses have been popped than have been pushed. This
is a backward-edge CFI violation.

Full: Raised when a SetPC or a SetPCLabel instruction
pushes a return address while the stack is full. This is not a
CFI violation, but an error that is raised when the stack fills.
For the implementation presented in this paper, a 128 word
Shadow Stack is used and is capable to run all benchmarks.
Nevertheless, a larger Shadow Stack can be easily placed in
the core if needed.

In the prototype implemented on the Leon3 softcore, all
violations are designed to lead to an illegal instruction ex-
ception that puts the Integer Unit in Error Mode thus halt-
ing the execution. Alternatively, a custom exception can be
easily created and handled by either the hardware or the
supervising software.

3.6 Portability to Other Architectures
The design of our implementation does not actively change

the core’s architecture, but simply adds a few components
and checks. The design only touches on very basic concepts
of computer architecture, like the Program Counter, inter-
rupts and exceptions, that are present in any modern core.
All modifications for supporting HCFI are only additive to
the processor, and rely on components present in any archi-
tecture. Therefore, the design presented in this paper can
be ported to any architecture with minimal effort, and, as
shown in section 5.5, with a small area overhead footprint.

4. SECURITY EVALUATION
In this section we discuss the security guarantees provided

by HCFI. In our threat model we assume that the attacker
can exploit a vulnerability, either a stack or heap overflow, or
use-after-free, present in the application’s source code. This
vulnerability can be further used to overwrite key compo-
nents of the running process like return addresses, function
pointers, or VTable pointers. We also consider that the at-
tacker has successfully bypassed ASLR or fine-grained ran-
domization [34], and has full knowledge of the process’ mem-
ory layout. Nevertheless, the system enforces that (i) the
.text segment is non-writable preventing the application’s
code from being overwritten, and (ii) the .data segment
is non-executable [4] blocking the attacker from executing

directly data with proper CFI annotation. Both of those
principles are commonplace in today’s systems preventing
software exploitation.

4.1 Defence with CFI ISA extensions
By forcing every return instruction to adhere to the ad-

dress stored at the top of the Shadow Stack, ROP attacks are
effectively foiled. In all our tests, every change in the con-
trol flow of the application, provoked by a return instruction
that was not consistent with the Shadow Stack’s top value,
led to a CFI violation being raised, leading to a trap in the
core and the eventual termination of the execution.

Similarly, an indirect call not leading to a pre-approved
function entry point would always raise a CFI violation and
halt the execution. Thus, foiling again most JOP attacks
by limiting the possible positions in the program that such
a jump would be allowed to target. The granularity of the
forward-edge protection is directly proportional to the depth
of the analysis performed on compile time.

4.2 Efficacy
We run a multitude of small programs designed to violate

the CFI principles in different ways, e.g. indirectly jumping
with invalid labels, or no labels at all, modifying return ad-
dresses on runtime, stressing the Shadow Stack, and various
others. Using behavioural simulation with Xilinx’s [39] Isim
tool, we had total transparency of every signal in the Leon3
softcore, and therefore the shadow memory elements them-
selves. We could observe every microbenchmark’s effect on
the Shadow Stack and the core in general. The observations
were consistent with our expectations. Every control-flow
violation expected was raised and detected, halting the exe-
cution. Finally, we further confirmed our observations by ad-
ditonally running the microbenchmarks on the programmed
FPGA board, again finding the expected results.

5. PERFORMANCE EVALUATION

5.1 Testing Environment
We synthesized and programmed the modified Leon3 soft-

core on a Xilinx ml605-rev.e FPGA board. The FPGA has
1024 MB DDR3 SO-DIMM memory and the design operates
at 120 MHz clock frequency. It has also several peripherals
including an 100Mb Ethernet interface. Since we are target-
ing embedded systems, we ran all tests without an operating
system present. The benchmarks are SpecInt2000 [35] and
a few microprocessor-based, namely Coremark [17], Dhrys-
tone [38], and matmul [9].

5.2 BareFS
Since the Spec suite is not designed for use in embed-

ded systems, and running on bare-metal has the drawback
of not offering the functionality of either files or command
line arguments, we had to modify the code of each bench-
mark in order for it to be able to read its input files and
arguments. The modifications included hard-coding all in-
put files and required command line arguments to buffers, as
well as changing any instructions related to I/O so that all
input comes from memory, and any possible output is either
discarded, written to a new buffer, or sent to stdout/stderr.

We automated the modification process by creating a li-
brary, which overloads a large part of the standard library
and a python script that, given the input files, creates a

C file containing buffers initialised to the contents of the
files. The library redefines all standard function calls (such
as open, fopen, fscanf, fgets, etc) with custom ones.

5.3 NOP Equivalence & Profiler Verification
Due to the architecture of the Leon3 core, our CFI instruc-

tions have the same execution time as a NOP instruction.
This allows us to perform various sanity checks during our
testing phase, with regards to expected overhead. One such
test consists of running all benchmarks, on an unmodified
(vanilla) Leon3 core, with NOP instructions in place of our
CFI instructions. All checks performed during the testing
phase verified our results. Finally all results are also verified
by using a profiler to count all calls, both direct and indi-
rect, and returns executed during the benchmarks’ runtimes.
Again, all results are consistent.

5.4 Runtime Overhead
To measure the overall runtime overhead we run for multi-

ple times each benchmark, instrumented with CFI instruc-
tions, on the modified core, which is programmed on the
ml605-rev.e FPGA. Before each run, both the instruction
and data cache are flushed. The results are depicted in Fig-
ure 10 and the runtime overhead is under 1%.

We have omitted gcc and eon from SpecInt2000. In the
case of gcc, CFI violations occur during normal execution,
since several return addresses change after being pushed to
the shadow stack. This has been confirmed by Dang et
al. [14]. For evaluating gcc we count NOP instructions, since
they are equivalent to CFI instructions (see Section 5.3).
While the overhead reported is without the full CFI instru-
mentation, counting NOP instructions is really close to mea-
suring the actual CFI instrumentation.

We are also unable to sufficiently instrument eon (written
in C++). The main problems are that we could not de-
tect VTables and that some return addresses changed during
runtime. An analysis of the code, on the assembly level, re-
vealed that the program loaded return addresses from mem-
ory, a few stack frames below the current one.

Interestingly, the gap benchmark came very close to reach-
ing the maximum theoretical overhead of 6.60%; measured
by running the worst case scenario - a loop executing only
indirect calls to a function, which, in turn, immediately ex-
ecutes a return instruction.

5.5 Hardware Overhead
We implemented our design firstly without setjmp/longjmp

support or the recursion optimization. The resulting area
overhead of our implementation, as detailed by the reports
of the Xilinx tools used to synthesize the design, was very
low, using an additional 0.65% registers and 0.81% LUTs
(look-up tables). With setjmp/longjmp support and the re-
cursion optimization in place, the area overhead increased
significantly to 2.52% registers and 2.55% LUTs. The addi-
tions to the design do not seem to add to the critical path of
the processor and thus do not lower the maximum frequency
that the core can achieve on the board.

6. DISCUSSION & FUTURE WORK
HCFI’s design does not offer support for multi-threaded

environments. A single shadow stack located in the core
is not sufficient to store the return addresses for all the
processes that share the processor. Implementing an array

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Vanilla CFI

Figure 10: Presentation of the runtime overhead measured with our implementation compared to the runtime on a

vanilla Leon3 core.

of shadow stacks inside the core would be a step towards
achieving this functionality. Unfortunately, such a hardware
implementation is not feasible, due to the substantial area
overhead it would introduce; the array would have to be
large enough to store the shadow stack for every active pro-
cess.

This approach can be easily implemented by having a
small array of shadow stacks indexed by the processes’ IDs.
When a context switch occurs, the operating system has
to store the new running process’ ID to a memory-mapped
register that is visible to the control-flow integrity pipeline.
The pipeline would, in turn, use it to select the appropriate
shadow stack for the running process. When the process is
terminated, a cfiexit instruction will be issued in order to
invalidate the process’ slot in the shadow stack array. Ad-
ditionally, several software stacks could be integrated in one
hardware stack. Instead of using an array of shadow stacks,
the operating system could use one shadow stack for stor-
ing return addresses along with their respective process ID.
Once a process terminates, all stale records contained at the
shadow stack should be cleaned up by the operating system.
Enabling multiple shadow stacks is part of our future work.

The most novel approach, that handles multi-threaded en-
vironments, is proposed by IAD [2]. They conclude that the
optimal design for a shadow memory assisted architecture
has to derive a large subset of the logic from the existing
MMU subsystem. In essence, the core is augmented with a
second MMU(Shadow MMU), that reserves a small part of
the system’s memory, and denies access to it for everything
but itself and the the set of CFI instructions from the core’s
extended ISA.

Compared to our design, the above approach could pro-
vide the same level of security, but would trade-off perfor-
mance for multi-threading support. The performance degra-
dation is owed to the fact that the CFI instructions would
now operate on the slow system memory, and not the ded-
icated memory located inside the processor’s core. An ob-
vious optimization, is to include enough memory for one
process inside the core, much like in our current design, and
utilize the shadow MMU in order to swap the CFI values
of the executing thread at every context switch. With this
optimization, the shadow MMU architecture would add mi-

nor performance overhead over our initial design, consider-
ing the overhead imposed by the context switch itself, and
therefore it could be essentially used on top of HCFI. We
plan to explore this integration in our future work.

7. RELATED WORK
Many mitigation techniques for protecting software are

based on CFI. Most of them are software-based, although
there are some attempts for delivering CFI-aware processors.
In this section, we discuss a representative selection of CFI
solutions and their limitations.

BinCFI [42] and CCFIR [41] are the first CFI implemen-
tations that can transparently work with binaries, where
the source code is absent. Both techniques are based on
relaxing the CFG a process should adhere to, by delivering
coarser-grained CFI polices compared to the original CFI
proposal [3]. Although coarse-grained CFI, as implemented
in both BinCFI and CCFIR, is practical and aims at pro-
tecting directly binaries with really low overhead, the se-
curity implications cannot be overlooked, since it has been
demonstrated that both techniques can be bypassed [20].
In a similar fashion, coarse-grained CFI techniques have
been enabled using particular hardware features, such as
the Last-branch Record (LBR) [13, 29], however, again, it
was quickly demonstrated that these policies are vulnerable
as well [11,16,21,33].

Since coarse-grained CFI provides limited security, the
community has further focused on (a) more fine-grained
policies that can be applied at the compiler level and on
(b) securing just the frequently exploited elements of a run-
ning process, and not all indirect branches, as for example
are VTable pointers. For example, researchers have pro-
posed techniques for securing VTables in binaries [5,12,19],
however, since recovering the semantics of all C++ objects
from binaries is not always possible, these systems are all
subject to more sophisticated attacks [32]. In another di-
rection, VTV [36], ShrinkWrap [22], and SafeDispatch [24]
apply fine-grained CFI policies at the compiler level for pro-
tecting VTables. However, even fine-grained policies have
been also demonstrated vulnerable, unless they include a
shadow-stack implementation [10].

In this paper, we do not attempt to promote a new CFI

flavor, but, rather, to argue that a full-featured system that
supports fine-grained CFI policies and an in-chip shadow
stack can be implemented and offer strong security guaran-
tees at a low cost (less than 1% overhead on average). Simi-
lar processors have been proposed in the literature, however
none is as complete and as fast as ours. In Branch Regu-
lation [25], neither forward or backward edge control-flow
changes are secured adequately. Forward edges are aug-
mented by coarse-grained CFI, which allows for branching
to any function entry point or any point within the currently
executing function. While backward edges are protected by
a shadow stack that keeps track of the program’s return ad-
dresses, the stack itself is not secured against tampering as
it resides in mapped memory. HCFI implements a shadow
stack that is never mapped on the host’s memory.

Davi et al. [15] propose HAFIX, a system for backward
edge CFI and, unlike Branch Regulation, HAFIX does use
dedicated, hidden memory elements for storing critical infor-
mation. Their implementation utilizes labels to mark func-
tions as active call sites. However, this has the disadvantage
of allowing the attacker to jump to any active function. This
is important, since their method also allows for an attacker,
using stack unwinding, to avoid the execution of CFIDEL
instructions and eventually mark every function as an ac-
tive one, thus effectively permitting jumps anywhere in the
program, and therefore being possibly vulnerable.

Budiu et al. [8] propose the usage of hard-coded labels
for both forward edge and backward edge control-flow in-
tegrity enforcement. The usage of labels for backward-edge
protection certainly limits the attacker, but still allows him
to take advantage of functions that are called by many call
sites, such as memcpy. Essentially, this implementation is
vulnerable, since it lacks of a shadow-stack implementation.

Finally, NSA’s proposal on hardware CFI [2] facilitates a
shadow stack to protect return addresses and landing point
instructions to augment indirect-call transfers. In order to
improve the flexibility of the shadow stack, they propose the
use of a shadow MMU that will handle the management of
the shadow memory. However, their proposal lacks granu-
larity on forward-edge flow integrity, thus an attacker can
point an indirect branch on any landing point instruction.

8. CONCLUSION
Many CFI policies have been proposed in current liter-

ature, however all of them have been demonstrated to be
vulnerable. Recently, it was argued that even fine-grained
CFI policies can be exploited, unless the policy is supported
by a shadow stack. In this paper, we acknowledge that the
use of a shadow stack is mandatory for any practical CFI
deployment. We further attempted to quantify the perfor-
mance of CFI and demonstrated that the technique can be
applied to real systems with practically negligible overhead.
For supporting our case, we presented HCFI, a full-featured
hardware implementation of CFI. We extended an existing
ISA by adding CFI assisting instructions and we deployed
shadow memory inside the core. We modified a SPARC
SoC and evaluated the prototype on an FPGA board by
running all SPECInt benchmarks instrumented with the ad-
ditional CFI-related instructions. The evaluation showed
that HCFI can effectively protect applications from code-
reuse attacks, while adding less than 1% runtime overhead.
Compared to similar hardware implementations, HCFI is
(i) complete, since it protects both forward and backward

edges, (ii) faster, since the experienced overhead is on aver-
age less than 1%, and (iii) more accurate, since it employs a
full-functional shadow stack implemented inside the core.

Acknowledgments This work was supported by the Eu-
ropean Commission through the project SHARCS under
Grant Agreement No. 644571.

9. REFERENCES
[1] The SPARC Architecture Manual, Version 8.

www.sparc.com/standards/V8.pdf.

[2] Hardware Control Flow Integrity for an IT Ecosystem.
https://github.com/iadgov/Control-Flow-Integrity/
tree/master/paper, 2015.

[3] Abadi, M., Budiu, M., Erlingsson, U., and
Ligatti, J. Control-flow integrity. In Proceedings of
the 12th ACM conference on Computer and
communications security (2005), ACM, pp. 340–353.

[4] Andersen, S., and Abella, V. Changes to
functionality in microsoft windows xp service pack 2,
part 3: Memory protection technologies, Data
Execution Prevention. Microsoft TechNet Library,
September 2004. http://technet.microsoft.com/en-us/
library/bb457155.aspx.

[5] Aravind Prakash, Xunchao Hu, and Heng Yin.
vfguard: Strict protection for virtual function calls in
cots c++ binaries. In Symposium on Network and
Distributed System Security (NDSS) (2015).

[6] Athanasakis, M., Athanasopoulos, E.,
Polychronakis, M., Portokalidis, G., and
Ioannidis, S. The devil is in the constants: Bypassing
defenses in browser jit engines. In NDSS (2015), The
Internet Society.

[7] Bletsch, T., Jiang, X., Freeh, V. W., and Liang,
Z. Jump-oriented programming: a new class of
code-reuse attack. In Proceedings of the 6th ACM
Symposium on Information, Computer and
Communications Security (2011), ACM, pp. 30–40.

[8] Budiu, M., Erlingsson, U., and Abadi, M.
Architectural support for software-based protection. In
Proceedings of the 1st workshop on Architectural and
system support for improving software dependability
(2006), ACM, pp. 42–51.

[9] Burkardt, J., Puglielli, P., and Center, P. S.
Matmul: An interactive matrix multiplication
benchmark. degrees from BITS, Pilani. He is a Fellow
of the Institution of Engineers (India), Fellow of
National Academy of Engineering (FNAE), Fellow of
National Academy of Sciences (FNASc), Life Member
ISTE(LMISTE). Professor Kothari has
published/presented 640 (1995).

[10] Carlini, N., Barresi, A., Payer, M., Wagner, D.,
and Gross, T. R. Control-flow bending: On the
effectiveness of control-flow integrity. In 24th USENIX
Security Symposium (USENIX Security 15)
(Washington, D.C., Aug. 2015), USENIX Association,
pp. 161–176.

[11] Carlini, N., and Wagner, D. Rop is still dangerous:
Breaking modern defenses. In 23rd USENIX Security
Symposium (USENIX Security 14) (San Diego, CA,
Aug. 2014), USENIX Association, pp. 385–399.

www.sparc.com/standards/V8.pdf
https://github.com/iadgov/Control-Flow-Integrity/tree/master/paper
https://github.com/iadgov/Control-Flow-Integrity/tree/master/paper
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx

[12] Chao Zhang, Chengyu Songz, Kevin Zhijie
Chen, Zhaofeng Cheny, and Dawn Song. Vtint:
Protecting virtual function tables’ integrity. In
Symposium on Network and Distributed System
Security (NDSS) (2015).

[13] Cheng, Y., Zhou, Z., Yu, M., Ding, X., and
Deng, R. H. Ropecker: A generic and practical
approach for defending against ROP attacks. In 21st
Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2013 (2014).

[14] Dang, T. H., Maniatis, P., and Wagner, D. The
performance cost of shadow stacks and stack canaries.
In ACM Symposium on Information, Computer and
Communications Security, ASIACCS (2015), vol. 15.

[15] Davi, L., Hanreich, M., Paul, D., Sadeghi, A.-R.,
Koeberl, P., Sullivan, D., Arias, O., and Jin, Y.
Hafix: hardware-assisted flow integrity extension. In
Proceedings of the 52nd Annual Design Automation
Conference (2015), ACM, p. 74.

[16] Davi, L., Sadeghi, A.-R., Lehmann, D., and
Monrose, F. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity
protection. In 23rd USENIX Security Symposium
(USENIX Security 14) (San Diego, CA, Aug. 2014),
USENIX Association, pp. 401–416.

[17] EEMBC. Coremark Benchmark.
https://www.eembc.org/coremark/.

[18] Gaisler Research. Leon3 synthesizable processor.
http://www.gaisler.com.

[19] Gawlik, R., and Holz, T. Towards automated
integrity protection of c++ virtual function tables in
binary programs. In Proceedings of the 30th Annual
Computer Security Applications Conference (New
York, NY, USA, 2014), ACSAC ’14, ACM,
pp. 396–405.

[20] Göktaş, E., Athanasopoulos, E., Bos, H., and
Portokalidis, G. Out of control: Overcoming
control-flow integrity. In Security and Privacy (SP),
2014 IEEE Symposium on (2014), IEEE, pp. 575–589.

[21] Göktaş, E., Athanasopoulos, E., Polychronakis,
M., Bos, H., and Portokalidis, G. Size does
matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In 23rd USENIX Security
Symposium (USENIX Security 14) (San Diego, CA,
Aug. 2014), USENIX Association, pp. 417–432.

[22] Haller, I., Göktaş, E., Athanasopoulos, E.,
Portokalidis, G., and Bos, H. Shrinkwrap: Vtable
protection without loose ends. In ACSAC (2015),
ACM, pp. 341–350.

[23] Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M.,
and Davidson, J. W. Ilr: Where’d my gadgets go?
In Proceedings of the 2012 IEEE Symposium on
Security and Privacy (Washington, DC, USA, 2012),
SP ’12, IEEE Computer Society, pp. 571–585.

[24] Jang, D., Tatlock, Z., and Lerner, S.
Safedispatch: Securing c++ virtual calls from memory
corruption attacks. In Symposium on Network and
Distributed System Security (NDSS) (2014).

[25] Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., and
Ponomarev, D. Branch regulation: Low-overhead
protection from code reuse attacks. In Computer

Architecture (ISCA), 2012 39th Annual International
Symposium on (2012), IEEE, pp. 94–105.

[26] One, A. Smashing the stack for fun and profit. Phrack
magazine 7, 49 (1996), 365.

[27] Özdoganoglu, H., Vijaykumar, T., Brodley,
C. E., Kuperman, B., Jalote, A., et al.
Smashguard: A hardware solution to prevent security
attacks on the function return address. Computers,
IEEE Transactions on 55, 10 (2006), 1271–1285.

[28] Pappas, V., Polychronakis, M., and Keromytis,
A. D. Smashing the gadgets: Hindering
return-oriented programming using in-place code
randomization. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy (Washington,
DC, USA, 2012), SP ’12, IEEE Computer Society,
pp. 601–615.

[29] Pappas, V., Polychronakis, M., and Keromytis,
A. D. Transparent rop exploit mitigation using
indirect branch tracing. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security
13) (Washington, D.C., 2013), USENIX, pp. 447–462.

[30] PaX Team. Address Space Layout Randomization
(ASLR), 2003. http://pax.grsecurity.net/docs/aslr.txt.

[31] Roemer, R., Buchanan, E., Shacham, H., and
Savage, S. Return-oriented programming: Systems,
languages, and applications. ACM Transactions on
Information and System Security (TISSEC) 15, 1
(2012), 2.

[32] Schuster, F., Tendyck, T., Liebchen, C., Davi,
L., Sadeghi, A.-R., and Holz, T. Counterfeit
object-oriented programming: On the difficulty of
preventing code reuse attacks in c++ applications. In
36th IEEE Symposium on Security and Privacy
(Oakland) (May 2015).

[33] Schuster, F., Tendyck, T., Pewny, J., Maaß,
A., Steegmanns, M., Contag, M., and Holz, T.
Evaluating the effectiveness of current anti-rop
defenses. In Research in Attacks, Intrusions and
Defenses - 17th International Symposium, RAID
2014, Gothenburg, Sweden, September 17-19, 2014.
Proceedings (2014), pp. 88–108.

[34] Snow, K. Z., Davi, L., Dmitrienko, A., Liebchen,
C., Monrose, F., and Sadeghi, A.-R. Just-in-time
code reuse: On the effectiveness of fine-grained
address space layout randomization. In Proceedings of
the 34th IEEE Symposium on Security and Privacy
(May 2013).

[35] Standard Performance Evaluation
Corporation (SPEC). SPEC CINT2000
Benchmarks.
http://www.spec.org/cpu2000/CINT2000.

[36] Tice, C., Roeder, T., Collingbourne, P.,
Checkoway, S., Erlingsson, U., Lozano, L., and
Pike, G. Enforcing forward-edge control-flow integrity
in gcc and llvm. In Proceedings of the 23rd USENIX
Conference on Security Symposium (Berkeley, CA,
USA, 2014), SEC’14, USENIX Association,
pp. 941–955.

[37] Wartell, R., Mohan, V., Hamlen, K. W., and
Lin, Z. Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code. In Proceedings of
the 2012 ACM Conference on Computer and

https://www.eembc.org/coremark/
http://www.gaisler.com
http://pax.grsecurity.net/docs/aslr.txt
http://www.spec.org/cpu2000/CINT2000

Communications Security (New York, NY, USA,
2012), CCS ’12, ACM, pp. 157–168.

[38] Weicker, R. P. Dhrystone: a synthetic systems
programming benchmark. Communications of the
ACM 27, 10 (1984), 1013–1030.

[39] Xilinx. ISE Simulator (ISim).
http://www.xilinx.com/tools/isim.htm.

[40] Xilinx. Xilinx Virtex 6 ml605 rev-e Evaluation Board.
http://www.xilinx.com/support/documentation/
boards and kits/ug534.pdf, 2012.

[41] Zhang, C., Wei, T., Chen, Z., Duan, L.,
Szekeres, L., McCamant, S., Song, D., and Zou,
W. Practical control flow integrity and randomization
for binary executables. In Security and Privacy (SP),
2013 IEEE Symposium on (2013), IEEE, pp. 559–573.

[42] Zhang, M., and Sekar, R. Control flow integrity for
COTS binaries. In Usenix Security (2013),

pp. 337–352.

http://www.xilinx.com/tools/isim.htm
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

	Introduction
	Contributions
	Organization

	HCFI Architecture
	[id=cn]Control-FlowControl Flow Integrity enforcement
	Forward-edge
	Backward-edge

	Architecture Overview
	ISA Extension
	Shadow Stack Incompatibilities
	Setjmp/Longjmp
	Tail-Call Elimination

	Recursion Support
	Instrumentation

	 HCFI Prototype Implementation
	Introduction to the Leon3 Softcore
	Delay Slot
	Memory Element Additions
	Leon3 Pipeline Modifications
	Violations
	Portability to Other Architectures

	Security Evaluation
	Defence with CFI ISA extensions
	Efficacy

	Performance Evaluation
	Testing Environment
	BareFS
	NOP Equivalence & Profiler Verification
	Runtime Overhead
	Hardware Overhead

	Discussion & Future Work
	Related Work
	Conclusion
	References

