
Horizon 2020 Program (2014-2020)
Cybersecurity, Trustworthy ICT Research & Innovation Actions

Security-by-design for end-to-end security
ICT 32-2014

Secure Hardware-Software Architectures for
Robust Computing Systems †

Deliverable D3.1: SHARCS System architectures and
requirements

Abstract: This deliverable describes the system architectures of SHARCS
applications and their hardware security requirements aligned with the ap-
plication requirements, as analyzed in WP2. It further reports on the progress
of the secure processor, secure memory and secure communication compo-
nents.

Contractual Date of Delivery Month 12
Actual Date of Delivery Month 12
Deliverable Dissemination Level Public (except of chapter 4 which is

Confidential)
Editor Ioannis Sourdis
Contributors Chalmers, FORTH, OnApp,

Neurasmus, Elektrobit
Quality Assurance Dmitry Pidan,

Manolis Stamatogiannakis

† The research leading to these results has received funding from the European Union
Horizon 2020 Program (2014-2020) under grant agreement n° 644571.

www.sharcs-project.eu 2 December 20, 2015

The SHARCS Consortium

Foundation for Research
and Technology – Hellas

Coordinator Greece

Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Chalmers Tekniska Högskola Principal Contractor Sweden
Technische Universität Braunschweig Principal Contractor Germany
Neurasmus BV Principal Contractor The Netherlands
OnApp Limited Principal Contractor United Kingdom
IBM - Science and Technology LTD Principal Contractor Israel
Elektrobit Automotive GmbH Principal Contractor Germany

Document Revisions & Quality Assurance

Internal Reviewers

1. Dmitry Pidan (IBM)
2. Manolis Stamatogiannakis (VU)

Revisions
Ver. Date By Overview
1.0 21/12/2015 I. Sourdis (CHAL),

E. Vasilakis (CHAL)
Finalizing deliverable.

0.8 18/12/2015 E. Vasilakis (CHAL),
J. Thomson (OnApp),
R. Seepers (NEUR),
T. Kamm (EB),
G. Christou (FORTH)

Addressing Quality Review comments.

0.7 8/12/2015 I. Sourdis (CHAL) Deliverable ready for internal review.
0.6 5/12/2015 E. Vasilakis (CHAL),

J. Thomson (OnApp),
R. Seepers (NEUR),
T. Kamm (EB),
G. Christou (FORTH)

Comments addressed by partners.

0.5 18/11/2015 I. Sourdis (CHAL) Introduction and Chalmers parts in Sec-
tion 4 added. Comments provided in re-
maining parts.

0.4 15/11/2015 R. Seepers (NEUR),
T. Kamm (EB),
G. Christou (FORTH)

IMD and Automotive parts of Sections 2
and 3 added. Some parts of Section 4
completed.

0.3 14/10/2015 J. Thomson (OnApp) Cloud description improved.
0.2 25/09/2015 J. Thomson (OnApp) Modifications to cloud application.
0.1 07/09/2015 J. Thomson (OnApp) Cloud hardware section preliminary.
0.0 24/6/2015 Editor I. Sourdis (CHAL) Outline of the document created.

www.sharcs-project.eu 3 December 20, 2015

www.sharcs-project.eu 4 December 20, 2015

Contents

1 Introduction 11

2 System Architectures 15
2.1 System Architecture for an Implantable Medical Device 15
2.2 System Architecture for Automotive applications 17

2.2.1 General description of a typical ECU 17
2.2.2 General description of a typical car network 19
2.2.3 General description of a connected car 19

2.3 System Architecture for Cloud Computing 21
2.3.1 Background . 21
2.3.2 Trusted Platform Module (TPM) 21
2.3.3 Instruction set extensions for security acceleration (e.g.

AES-NI) . 22
2.3.4 Add-in cards . 22
2.3.5 OnApp Cloud requirements 23
2.3.6 Unified Extensible Firmware Interface (UEFI) 24

3 Hardware support for application requirements 25
3.1 Hardware Requirements for Implantable Medical Devices . . . 26
3.2 Hardware Requirements for Automotive applications 27

3.2.1 Hardware security requirements 28
3.2.2 Hardware application requirements 29

3.3 Hardware Requirements for Cloud Application 30
3.3.1 Security requirements - hardware 30
3.3.2 Hardware application, beneficial features 31
3.3.3 Application hardware requirements 32
3.3.4 Hardware assumptions 34

5

4 Current progress and future plans on hardware security mecha-
nisms 35
4.1 Secure microprocessor architectures 36

4.1.1 Instruction Set Randomization 36
4.1.2 Control Flow Integrity 37
4.1.3 SISC: customized processor for security 38

4.2 Secure Memory Architectures 38
4.2.1 Encryption of shared memory data 39
4.2.2 Data Integrity . 40
4.2.3 Secure MMU . 40
4.2.4 Instruction ROM memory 41

4.3 Secure communication . 41
4.3.1 Secure IMD communication 42
4.3.2 Secure Cloud communication 43

A Mapping of Hardware Techniques to Hardware Requirements 45

www.sharcs-project.eu 6 December 20, 2015

List of Figures

2.1 The Neurasmus-SoC which implements the implant application. 16
2.2 Automotive ECU examples. 17
2.3 Typical ECU. 18
2.4 AUTOSAR software stack . 19
2.5 Automotive on-board network example 20
2.6 Connected car example . 20
2.7 OnApp requirements and simplified N/W topology for a Cloud

deployment using Integrated Storage. 24

3.1 Diagram showing the computing systems involved in the cloud
application. 34

4.1 IMD Memory Management Unit placed on bus 40
4.2 IMD instruction ROM . 41

7

LIST OF FIGURES

www.sharcs-project.eu 8 December 20, 2015

Acronyms

AES Advanced Encryption Standard. 37, 39

AES-NI Advanced Encryption Standard New Instructions. 12, 39

CAN Controlled Area Network. 18

CFI Control Flow Integrity. 29, 35–38

COTS Commercial Off-The-Shelf. 12, 21

CPU Central Processing Unit. 37, 39

DMA Direct Memory Access. 39

ECC Error Correcting Codes. 40

ECU Electronic Control Unit. 12, 15, 17–19, 28

FPGA Field Programmable Gate Array. 35, 43

GPU Graphics Processing Unit. 43

IMD Implantable Medical Device. 11, 12, 15, 16, 35–42

IPI Inter-Pulse Interval. 42

ISA Instruction Set Architecture. 36, 38

ISR Instruction Set Randomization. 29, 35–37

JOP Jump-oriented Programming. 37

9

Acronyms

LIN Local Interconnect Network. 18

MMU Memory Management Unit. 35, 39, 40

MPU Memory Protection Unit. 18

NIC Network Interface Card. 23

NIDS Network Intrusion Detection Systems. 12, 35, 43

OPEX Operating Expense. 23

RAM Random Access Memory. 39

ROM Read Only Memory. 35, 39, 41

ROP Return-oriented Programming. 37

SiMS Smart Implantable Medical System. 16

SISC Smart-Implant Security Core. 16, 36, 38

SoC System on Chip. 15–17, 35, 38–40

TCO Total Cost of Ownership. 23

TPM Trusted Platform Module. 12

www.sharcs-project.eu 10 December 20, 2015

1
Introduction

Workpackage 3 designs hardware security mechanisms for the SHARCS frame-
work. As a first step towards this goal, in Task T3.1 we identified the par-
ticular security requirements to be supported in hardware for the SHARCS
applications. This was performed based on the outcome of deliverable D2.1.

This deliverable (D3.1) is primarily the result of our activities in T3.1.
It first describes the system architecture of each application (Implantable
medical device, Automotive, Cloud computing) in Chapter 2. Subsequently,
in Chapter 3 we identify the security requirements of each application that
are to be supported in hardware and hence to be addressed in this work-
package1. Finally, the document describes in Chapter 4 our current progress
and future plans for our activities in T3.2, T3.3 and T3.4.

In summary, the three SHARCS applications provide 3 very diverse sys-
tems as use cases considered in the project.

The implant application is a minimalistic system with two very basic mi-
croprocessors. It has very tight energy and area constraints and low per-
formance requirements. Due to its required connection to external devices,
the Implantable Medical Device (IMD) is vulnerable to various attacks. As
explained later in Section 3.1, the main IMD security requirements that call
for hardware support are the following:

• Protection against code injection and code reuse attacks;

• More efficient (faster, energy efficient) computing for encryption/decryption;

• Data integrity and data leakage protection;

• Dynamic key management.

1Unless there are available existing efficient solutions.

11

CHAPTER 1. INTRODUCTION

The automotive application is an embedded system which has as a basic
building block an Electronic Control Unit (ECU) composed of an embedded
processor, external memory and various peripherals and is supported by an
embedded operating system. Such system has higher performance require-
ments but lower power consumption constraints compared to an IMD. Its
security requirements that are to be supported in hardware, as discussed in
Section 3.2, are primarily:

• Protection against code injection and code reuse attacks, and

• Data integrity, data leakage protection,

Additionally, improving the processing efficiency for cryptography, as well
as dynamic key management may also be of interest.

Cloud computing is based on radically different infrastructure to either
that of the IMD or Automotive applications. Clouds are hosted in large data
centers that consist of one or multiple types of hardware platforms built
mostly out of Commercial Off-The-Shelf (COTS) components. In general,
cloud services provide a fraction of their computing resources to clients
offering isolation and Quality of Service at the minimum possible owner-
ship and maintenance (power, cooling, engineering) cost. Although it is
extremely hard to introduce hardware changes in COTS platforms used in
cloud computing, we have identified some cloud security requirements to
best be addressed by hardware mechanisms, as explained in Section 3.3. In
particular:

• Monitoring network traffic for suspicious or potentially damaging be-
haviour,

• Hardware accelerated encryption to aid end-user security and privacy,
and

• Uniquely identifying components of a computing system and assure
that they are running in an expected mode.

The first cloud requirement will be addressed in the project by a Network
Intrusion Detection Systems (NIDS). For the rest of the cloud requirements,
there are existing solutions, such as Intel’s Advanced Encryption Standard
New Instructions (AES-NI) and Trusted Platform Module (TPM); still we
may explore new ones, which may have the potential to be integrated by
hardware vendors in future platforms.

The remainder of the document expands on the above, describing the
system considered for each one of the three applications (Chapter 2), their
hardware security requirements (Chapter 3) and the current status of our

www.sharcs-project.eu 12 December 20, 2015

work in WP3 (Chapter 4). Finally, an overview of the SHARCS hardware
mechanisms and their connection to the Application’s hardware security re-
quirements is offered in Appendix A.

www.sharcs-project.eu 13 December 20, 2015

CHAPTER 1. INTRODUCTION

www.sharcs-project.eu 14 December 20, 2015

2
System Architectures

This Chapter briefly describes the system architectures of the three SHARCS
applications used in the project, namely the Implantable Medical Device
(IMD), the automotive ECU and the cloud computing application. This de-
scription is the basis for subsequently identifying the the hardware security
requirements that are to be addressed in the remaining activities of WP3.

2.1 System Architecture for an Implantable Medical
Device

The SHARCS IMD Application is a novel, closed-loop, fully implantable neu-
romodulator that senses EEG and single-neuron recordings, detects seizures
before they manifest, and prevents them through highly selective optoge-
netic (or electric) stimulation of cerebellar neurons. Although implant func-
tionality is autonomous, the implant must also communicate with the out-
side world for overall control of the device (e.g. recalibration) as well as
for sending patient-monitoring information to the patient, the doctor and so
on.

The implant is smart, adaptive and autonomous, but it must also allow
for operation under the remote control of an external handheld reader de-
vice, e.g. a smartphone. The handheld can perform various operations such
as implant control, (re)calibration and data logging.

The neuromodulator is implemented in the Neurasmus System on Chip
(SoC), depicted in Figure 2.1. Within SHARCS, we set the application
boundary to contain all digital components plus wireless communication
to/from the SoC. That is, we consider the following components:

1. Sensor (digital): This module obtains a digitized version of the sen-
sory recording of an implanted electrode (saved in a register or mem-
ory location). It is the hardware block responsible for providing the

15

CHAPTER 2. SYSTEM ARCHITECTURES

Figure 2.1: The Neurasmus-SoC which implements the implant application.

Smart Implantable Medical System (SiMS)-processor with correct and
fresh data-samples at real-time every 10 ms. Within SHARCS, the dig-
itized input to the sensor module will be emulated in hardware.

2. Actuator (digital): This hardware module forms the main output of
the SoC. It is responsible for starting and stopping stimulation on the
implanted electrode, based on a command received from the SiMS-
processor. Within SHARCS, we include the memory location that the
actuator reads as part of the application boundary.

3. Smart Implantable Medical System (SiMS) processor (main im-
plant functionality): This module consists of three hardware compo-
nents (the SiMS-processor with private instruction and data memory)
and a software (the implant functionality) running on it. This mod-
ule processes the input from the sensor and determines if the input
shows seizure-related electrical activity. If so, it sends a message to
the actuator module to start/stop stimulation.

4. Smart-Implant Security Core (SISC) processor (secure communi-
cation): The SISC processor is tasked with handling all (secured)
communication to and from the SoC, without disrupting the main IMD
functionality performed by the SiMS core. It has its own (private)
instruction- and data-memory blocks.

5. Shared-memory block: This is a hardware component used for log-
ging data originating from the SiMS (start and stop-time of seizure-
activity) and SISC processor (data exchanged through the wireless
communication).

6. SoC interconnect (bus): This hardware component is responsible for
allowing communication between the components in the SoC.

www.sharcs-project.eu 16 December 20, 2015

2.2. SYSTEM ARCHITECTURE FOR AUTOMOTIVE APPLICATIONS

A detailed description of the two main operations performed by the SoC,
autonomous seizure prevention (main functionality) and external-device
control, can be found in SHARCS deliverable D2.1.

2.2 System Architecture for Automotive applications

Modern premium cars have up to 80 Electronic Control Units (ECUs). Fig-
ure 2.2 shows a selection of different ECUs mounted in a car. Some ECUs,
like the engine control and braking system, are essential in driving the car.
Other systems such as the airbag are responsible for the safety of the driver.
Window lift and Seat control are examples of ECUs controlling comfort func-
tions, which are not necessarily needed to drive the car. The ECUs are in-
terconnected by an on-board network. Furthermore a smart car may com-
municate with the outside world (e.g. Car-to-Car, Cloud service). Within
SHARCS we would like to secure the complete system using a holistic ap-
proach.

Figure 2.2: Automotive ECU examples.

2.2.1 General description of a typical ECU

An Electronic Control Unit (ECU) is an embedded system with a specific
functionality in a car (e.g. engine control, brake). Figure 2.3 shows an ab-
stract overview of an ECU. Depending on the ECU functionality there are
different sensors(input) and actuators(output) connected. For example a
Heating, Ventilation and Air Conditioning (HVAC) system needs a tempera-
ture sensor as an input. Depending on the measured and target temperature
the system can control a heater. The ECUs are interconnected by different
automotive buses. It is therefore important to secure all ECUs regardless

www.sharcs-project.eu 17 December 20, 2015

CHAPTER 2. SYSTEM ARCHITECTURES

of their function. Otherwise it could be possible for a compromised ECU to
gain access to others.

A typical automotive ECU consists, among others, of the following com-
ponents:

• A processor core.

• Flash memory with a flash memory controller for persistent data stor-
age.

• A Memory Protection Unit (MPU).

• A clock control unit.

• An interrupt controller handling external and internal interrupts.

• Controllers for access to communication networks (e.g. Controlled
Area Network (CAN), Flexray, Local Interconnect Network (LIN), Au-
tomotive Ethernet).

• Sensor interface (e.g. Temperature, Speed, Camera, Radar).

• Interfaces for actuators (e.g. Actuators, Motors, Lamps, Relays).

Figure 2.3: Typical ECU.

In an ECU usually a software application based on the AUTOSAR stan-
dard is executed on a specific automotive microcontroller(see Figure 2.4).

www.sharcs-project.eu 18 December 20, 2015

2.2. SYSTEM ARCHITECTURE FOR AUTOMOTIVE APPLICATIONS

AUTOSAR1 (AUTomotive Open System ARchitecture) is a worldwide devel-
opment partnership of vehicle manufacturers, suppliers and other compa-
nies from the electronics, semiconductor and software industry. The layered
architecture ensures the decoupling of the functionality from the supporting
hardware and software services.

Figure 2.4: AUTOSAR software stack

2.2.2 General description of a typical car network

All ECUs are interconnected to an on-board network by different automotive
busses like CAN, Flexray or Ethernet. The on-board network architecture is
different between every car manufacturer and even car model. An exem-
plary network is shown in Figure 2.5. All ECUs are usually combined into
groups like for example Body Electronics (e.g. Window Lift, Lighting), In-
fotainment (e.g. Head Unit, Instrument Cluster), Chassis and Safety (e.g.
Electric Power Steering, Airbag) and Powertrain(e.g. Engine control, trans-
mission). Communication between the different groups is possible over a
gateway. It is therefore important to secure all ECUs as well as the commu-
nication between them regardless of their function. Otherwise it could be
possible for a compromised ECU to gain access to others.

2.2.3 General description of a connected car

Modern cars are more and more connected to the outside world (Figure 2.6).
They can communicate with other cars (Car-to-Car), with all kinds of infras-
tructure (Car-to-Infrastructure), with Cloud Services (e.g. real-time naviga-
tion or backup of settings) and with user appliances, such as smart-phones,

1http://www.autosar.org/

www.sharcs-project.eu 19 December 20, 2015

http://www.autosar.org/

CHAPTER 2. SYSTEM ARCHITECTURES

Figure 2.5: Automotive on-board network example

which can control it remotely. Because of the wireless connectivity a pos-
sible vulnerability can be remotely exploited in a large number of vehicles.
This must be prevented by security mechanisms at all hazards.

Figure 2.6: Connected car example

www.sharcs-project.eu 20 December 20, 2015

2.3. SYSTEM ARCHITECTURE FOR CLOUD COMPUTING

2.3 System Architecture for Cloud Computing

In this document we describe some of the background relevant to the hard-
ware requirements of cloud application, while more of the detailed descrip-
tion is provided in D2.1. OnApp’s customers are cloud service providers
who install the software platform onto hardware that they have available
in the data center. Sometimes they specifically purchase new hardware for
deploying the platform but generally they use COTS legacy hardware that
they have already in the data center. An advantage of the OnApp suite is
that it is hardware and vendor neutral, which means that we try to support
as many hardware devices as possible. That said, the current OnApp soft-
ware stack is designed for x86-64 bit Intel hardware that is in widespread
use in data centers. The hardware systems used for running OnApp also
have to be able to support CentOS 5/6/7 Linux for the Control Panel and
for supporting the Xen and KVM virtualisation platforms on the Hypervisor
servers. The Backup server should also support CentOS Linux.

2.3.1 Background

Data centers are typically provisioned with an expected lifetime of 10-15
years but in that time there will likely be three to four server hardware
refreshes2. Apart from the initial set-up/installation and maintenance the
hardware will not change so the hardware effective life-time should be
around 3-4 years.

We now describe, in brief, some of the hardware primitives and accel-
erator extensions that are built into hardware that is relevant to the Cloud
application domain.

2.3.2 Trusted Platform Module (TPM)

The use of Trusted Platform Module (TPM) as part of the Trusted Execu-
tion Platform (TXT) is limited to motherboard and server vendors that have
added a suitable TPM slot. Also, it is usually included as an extra for high-
end server hardware. Some vendors provide the slot but do not provide the
module, which for security reasons will need to be added and provisioned
at the time of installation. TPM is normally combined with a software solu-
tion to help improving the trusted computing by using the secured memory
regions for holding sealed keys that are used for encryption and decryption.
Windows OS takes advantage of TPM for enabling BitLocker encryption of
the OS itself and the data contained on the hard drive. TPM also offers the

2http://www.emersonnetworkpower.com/documentation/en-us/brands/
liebert/documents/white%20papers/lifecycle%20costing%20for%20data%
20center_determining%20the%20true%20cost%20of%20data%20centers%
20cooling.pdf

www.sharcs-project.eu 21 December 20, 2015

http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/lifecycle%20costing%20for%20data%20center_determining%20the%20true%20cost%20of%20data%20centers%20cooling.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/lifecycle%20costing%20for%20data%20center_determining%20the%20true%20cost%20of%20data%20centers%20cooling.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/lifecycle%20costing%20for%20data%20center_determining%20the%20true%20cost%20of%20data%20centers%20cooling.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/lifecycle%20costing%20for%20data%20center_determining%20the%20true%20cost%20of%20data%20centers%20cooling.pdf

CHAPTER 2. SYSTEM ARCHITECTURES

ability to check that the configuration of the system is in a known ‘good’
state by recording parameters associated with a trusted boot and then at
the point a configuration state is to be attested those recorded values fu-
ture points in time. Additionally, TPM offers features that are of potential
interest to , like remote attestation and sealing.

2.3.3 Instruction set extensions for security acceleration (e.g.
AES-NI)

A hardware feature that is more prevalent than TPM are the Advanced En-
cryption Standard (AES-NI) extensions to the x86-64 Instruction Set Archi-
tecture (ISA). Server processors that have been manufactured by Intel since
2010 are likely to have support for these extensions. Similarly AMD have
adopted the extension in 2011 and as such AMD server processors manu-
factured beyond 2011 will generally have support for AES-NI. AES-NI en-
abled processors will allow for accelerated encryption and decryption for
processes that use AES ciphers and use the correct ISA extensions. When
using Secure Shell (SSH), or using an SSL terminator or other functions
that require AES, those processes will benefit from improved performance.
For example, OpenSSL that is used by a large number of web hosters and
other transport layer security processes such as IPSec can benefit from AES-
NI. In addition to the AES-NI extensions that benefit AES ciphers, there are
extensions that help to accelerate other ciphers including SHA-1, SHA-256
etc. that are expected to be included in some of the SkyLake Intel processors
due in 2016.

In addition to the two security components discussed above there is also
the possibility of using specific accelerator add-in cards. Recently, it has been
a trend to use GPU on graphics cards to accelerate security related functions
such as AES cipher encryption/decryption.

2.3.4 Add-in cards

Add-in cards, of which the most popular at the time of writing are PCI-
Express add-in cards, are sometimes used by data centers and are usually
used either as additional RAID cards or network interface hardware. These
cards are usually bought at the time the hardware is purchased. It is ex-
tremely rare that a data center owner customises the hardware himself, pre-
ferring to use standard tested cards that come pre-installed and sometimes
certified by the hardware vendor. The most popular and prevalent add-in
card type available on Intel boards are PCI-Express slots. On most server
boards there will be at least one PCI-Express slot. Another consideration
though is that to reduce the chassis footprint these cards will utilise angled
riser cards that change the orientation of the card. This also limits their
maximum size. Exact constraints of the physical card size, the number of

www.sharcs-project.eu 22 December 20, 2015

2.3. SYSTEM ARCHITECTURE FOR CLOUD COMPUTING

PCI slots, PCI supported version and number of lanes is dependent on the
type and configuration of the motherboard and chassis.

Add-in cards have not typically been used for adding security features
other than for specific applications. Part of the reason for this is that add-in
cards add to the complexity of the system, increase the cost (Total Cost of
Ownership (TCO) and Operating Expense (OPEX)), increase the likelihood
of a failure and require more maintenance. Another reason for avoiding
add-in cards is that in the cloud environment, only hardware that is passed
through the hypervisor to the virtual machines will be exposed, unless hard-
ware pass-through is used or a virtualisation solution exists. Hardware
passthrough on customer deployments is very rare and would mean that
only a set of virtual machines that have been assigned access will be able to
utilise the hardware. Some companies expose particular hardware features
but this is normally for their bare-metal offerings. One such offering is IBM’s
Softlayer that integrates with the Intel TXT platform3 for exposing security
primitives to the bare-metal platform4.

The server hardware is selectable by end users. OnApp has a hardware
requirements recommendation page5, however ultimately it is the client’s
responsibility to install the system on the hardware.

2.3.5 OnApp Cloud requirements

For a cloud platform to be useful the control panel needs two Network In-
terface Cards (NICs). One NIC connects to the Internet and another NIC is
private and connects to the hypervisor network. Using the Preboot Execu-
tion Environment (PXE) boot specification, the OnApp cloudboot platform
can be loaded into RAM on a hypervisor via a network card. This means that
the hypervisor hardware needs to support PXE boot and have virtualisation
extensions. The cloudboot image is packed into an image with some of the
user-space applications being loaded into 272 MB supported by CRAMFS
but it is usually suggested that a hypervisor should have at least 8GB of
RAM. The filesystem is then be to RAM as well as the hypervisor software.
The storage controller nodes are also loaded into RAM on the cloudboot
hypervisors. The storage controllers are VM images that run the Integrated
Storage platform software that utilises locally attached storage on the hy-
pervisors avoiding the requirement for an external SAN. If using Integrated
Storage then one additional NIC is needed on the hypervisor hardware for
the SAN traffic. Additionally, the appliances normally have another network
interface to allow customers to interact with their VMs, avoiding having to

3http://www.softlayer.com/intel-txt
4http://www.softlayer.com/press/ibm-and-intel-bring-new-security-features-to-the-

cloud
5http://onapp.us.com/platform/requirements

www.sharcs-project.eu 23 December 20, 2015

http://www.softlayer.com/intel-txt
http://onapp.us.com/platform/requirements

CHAPTER 2. SYSTEM ARCHITECTURES

Figure 2.7: OnApp requirements and simplified N/W topology for a Cloud
deployment using Integrated Storage.

pass traffic through the control panel or one of the other NIC interfaces.
Figure 2.7 shows the hardware requirements in an illustrative manner.

2.3.6 Unified Extensible Firmware Interface (UEFI)

UEFI is a specification for software that acts as a bridge between the firmware
and the OS level. Although there must be support in the hardware for UEFI
the authors believe that the discussion of UEFI and secure boot best resides
in the software discussion and as such will be captured in D4.1.

www.sharcs-project.eu 24 December 20, 2015

3
Hardware support for application requirements

This Chapter describes the security requirements of each SHARCS applica-
tion that are to be supported in hardware. These requirements are extracted
based on the outcome of deliverable 2.1 and the system description offered
in the Chapter 2. In general, supporting security in hardware rather than
software has numerous benefits, including:

• Power utilization. Due to having custom hardware accelerators that
perform a limited subset of operations the power efficiency can be
improved.

• Performance per unit cost. Usually the performance/cost point will be
far greater than a system that has to perform generic computing to be
attractive for people to buy the add-in boards.

• Other benefits of hardware security are: 1

Memory Access prevention

Integrity assurance

More secure against reverse engineering

More resistance to power analysis attacks

Ability to have long term key storage

Independence from OS security

There are also disadvantages of using hardware instead of software that
include:

• Long lead time for designing and synthesizing hardware;

1http://www.infosecwriters.com/text_resources/pdf/Security_
Implications_of_HW_vs_SW_Cryptographic_Modules.pdf

25

http://www.infosecwriters.com/text_resources/pdf/Security_Implications_of_HW_vs_SW_Cryptographic_Modules.pdf
http://www.infosecwriters.com/text_resources/pdf/Security_Implications_of_HW_vs_SW_Cryptographic_Modules.pdf

CHAPTER 3. HARDWARE SUPPORT FOR APPLICATION REQUIREMENTS

• Inflexibility once the hardware has been developed to modify;

• Large non-recurring cost incurred;

• Cannot easily upgrade firmware if there is a security vulnerability de-
tected;

• Very difficult for a non-established party to get hardware to market;

• Uptake will be much slower than for software.

3.1 Hardware Requirements for Implantable Medical
Devices

The application analysis in SHARCS deliverable D2.1 has identified a num-
ber of IMD security requirements, which we repeat here for convenience:

SR-1.1 Security compliance with extra-functional constraints. Briefly stated,
these extra-functional constraints are: 1) Real-time execution of the
IMD functionality (10 ms); 2) Increase power and energy consump-
tion by no more than 10%; 3) Increase device-area by no more than
30%.

SR-1.2 Security compliance with proper treatment delivery.

SR-1.3 Patient-data security and privacy.

SR-1.4 Patient safety & device accessibility.

SR-1.5 Security compliance with maintenance tasks.

Given the performance, power and energy requirements in SR-1.1, we
opt to use hardware-based security techniques as these are typically more
efficient (performance, energy) than software-based solutions. Considering
the security threats specified in SHARCS D2.1, and the corresponding at-
tacks that may realize them (analyzed in SHARCS D2.2), we require the
hardware to perform the following functions:

HR-1.1 Lightweight cryptography (SR-1.1) Given security requirement SR-
1.1, security should be added at minimal overheads to the IMD and
not lead to a violation of its real-time deadline. The SISC core in
the Neurasmus SoC is an ASIP processor targeting (generic) security
primitives. In order to make SISC more efficient, we consider a vari-
ety of hardware-based enhancements to the SISC core as described in
section 4.1.3.

www.sharcs-project.eu 26 December 20, 2015

3.2. HARDWARE REQUIREMENTS FOR AUTOMOTIVE APPLICATIONS

HR-1.2 Prevent code injection and code reuse (SR-1.2 through SR-1.5):
The SiMS and SISC core virtually have full control over the IMD and
its data, and an attacker could violate security requirements SR-1.2,
SR-1.4 and SR-1.5 if he could inspect or modify this code (through
code injection or code reuse; see SHARCS D2.2 threat TH1.1-1). By
applying instruction set randomization (see section 4.1.1), we limit
the understanding an attacker has of the code and the possibilities
for arbitrary code execution. Moreover, hardware-based control-flow
integrity (section 4.1.2) is implemented to detect any unauthorized
code modifications and, if such a modification is detected, implant
functionality is reverted to a basic version stored on a fail-safe ROM
(section 4.2.4).

HR-1.3 Prevent data manipulation (SR-1.3): As an attacker is not allowed
to modify the private patient data stored on the IMD, we aim to guar-
antee data integrity through using error-detection/correcting codes on
the memory (section 4.2.2).

HR-1.4 Prevent data leakage (SR-1.3): Patient data should not be accessible
to an attacker, even in case of a security breach. As such, we opt for se-
cure and encrypted IMD communication (section 4.3) enhanced by the
SISC ASIP processor (described in section 4.1.3). Moreover, a memory
management unit (section 4.2.3) is employed to restrict the memory
locations available to each SoC component, such that compromising
one component cannot affect the entire SoC.

HR-1.5 Enable emergency authentication (SR-1.4): Patient safety must be
guaranteed even in case of emergencies. In the existing IMD-security
protocol, key management relies on the initial (offline) distribution of
security keys and identifiers, preventing unauthorized access during
emergencies (as discussed in section 4.3). To strengthen the existing
protocol, online key distribution is introduced (section 4.3) which may
utilize custom hardware to minimize energy consumption (further fa-
cilitating SR-1.1).

3.2 Hardware Requirements for Automotive applica-
tions

The application evaluation in SHARCS deliverable D2.1 has identified a
number of security requirements that apply to the Automotive Application,
which we repeat here for convenience:

SR-2.1 Message manipulation: An attacker shall not be able to impersonate
another sender of messages which are received by the controller on

www.sharcs-project.eu 27 December 20, 2015

CHAPTER 3. HARDWARE SUPPORT FOR APPLICATION REQUIREMENTS

a communication bus in such a way that the controller executes code
which the attacker provides.

SR-2.2 Data flash manipulation: If there is a data flash module on the con-
troller which can be manipulated by an attacker, the attacker shall not
be able to manipulate the data flash in such a way that the controller
executes code which the attacker provides.

SR-2.3 Single controller execution: If the attacker is able to manipulate a
single controller in such a way that the controller executes code which
the attacker provides, the method used for this controller shall not be
possible on a different controller running the same software stack.

SR-2.4 Software module isolation: If an attacker is able to modify the source
code of one of the basic software modules or the application modules,
the attacker shall not be able to obtain information about data in the
other basic software modules and application modules.

The Automotive Application is very security-critical and the on-board
and off-board vehicle communication must be enhanced with security mech-
anisms to prevent attackers from manipulating functionality or gaining unau-
thorised access to those ECUs. Such protection is essential for the safety and
security of passengers on the road. It is therefore important to have a hard-
ware trust anchor, which is the first secure part of the ECU that all other
security mechanisms relies on.

Furthermore many ECUs, like the braking system, are timing critical and
any new introduced security mechanisms should only have a minimal per-
formance impact. This can be achieved more efficiently by using hardware
(as opposed to software) security features.

3.2.1 Hardware security requirements

HR-2.1 Code injection (SR-2.2 through SR-2.3) One of the main threats in
the automotive application is the insertion of malicious code/data as
well as the change of the program flow. This way, an attacker can
either manipulate ECUs functionality, or gain an unauthorized access
to the ECUs data. A compromised ECU for example can endanger
the safety of vehicles or unlock optional software based functionality
without paying for it. Hardware security mechanisms like Instruction
Set Randomization(ISR) as well as Control Flow Integrity(CFI) might
be appropriate to prevent these attacks and secure the system (see
Section 4.1).

HR-2.2 Code reuse (SR-2.2 through SR-2.3) As vehicles are more and more
connected (e.g. Car-to-Car, Cloud services) a possible vulnerability

www.sharcs-project.eu 28 December 20, 2015

3.2. HARDWARE REQUIREMENTS FOR AUTOMOTIVE APPLICATIONS

can be remotely exploited in a large number of vehicles. Hardware
security mechanisms like Instruction Set Randomization (ISR) as well
as Control Flow Integrity (CFI) might be appropriate to prevent these
attacks and secure the system (see Section 4.1).

HR-2.3 Data integrity, data leakage (SR-2.4) Smart cars are connected to
the outside world (e.g. cloud services, Car-to-Car) and therefore more
sensitive data must be protected against illegal access. Efficient en-
cryption of shared memory data as described in section 4.2 might be
useful to secure data.

Efficient encryption/decryption and dynamic key management as de-
scribed in section4.3 could be used but are not required in the automo-
tive use case. Several security mechanisms like Secure Hardware Exten-
sion(SHE) and secure onboard communication are already supported. Nev-
ertheless, these newly developed hardware security features might be also
interesting for automotive applications.

3.2.2 Hardware application requirements

• Interoperability: Developed hardware security mechanisms should
be independent from the processor architecture (e.g. ARM, Tricore).

• Performance: The hardware security mechanisms should only have
minimal impact on the execution time.

• Power: Power consumption overhead should be as little as possible
but is not as critical as in the implant application.

• Chip area: The chip area overhead should be as small as possible to
save costs.

www.sharcs-project.eu 29 December 20, 2015

CHAPTER 3. HARDWARE SUPPORT FOR APPLICATION REQUIREMENTS

3.3 Hardware Requirements for Cloud Application

The application evaluation in SHARCS deliverable D2.1 has identified a
number of security requirements that apply to the Cloud Computing ap-
plication, which we repeat here for convenience:

SR-3.1 End-user security and privacy

SR-3.2 Integrity of the platform and workloads

SR-3.3 Availability of the platform

SR-3.4 All operations must be attributable to a user

SR-3.5 All operations must be authenticated

In D2.1 the security threats related to the Cloud application domain have
been enumerated. These threats formed the basis of security requirements
that are captured in that same document. In D2.2 further investigation into
the attack vectors and specific vulnerabilities was performed. Some of the
risks can be mitigated through a combination of software and hardware
techniques.

The power utilisation and energy efficiency for security solutions in the
data center is not as critical as it is for the Automotive or IMD applications.
The more sensitive constraint is that of performance of the hardware. Run-
ning security functions that are computationally expensive limits their util-
isation and deployment in applications. Many of the requirements detailed
in D2.1 could be satisfied by security techniques implemented in software
for generic computing units or in hardware for dedicated units. As stated
earlier there are a number of benefits of running security functions in hard-
ware including better power utilisation, improved performance and more
difficult to break security mechanisms.

3.3.1 Security requirements - hardware

HR-3.1 Hardware accelerated encryption to aid end-user security and pri-
vacy (SR-3.1): Data and operations within a VM that is owned by an
end-user (user role: “End-user”) are private and should not be accessi-
ble by other end-users or other stakeholders unless they are authorised
to do so. Encryption mechanisms make data hard to read without the
correct key thus help to improve privacy and maintain confidentiality
of the data. Hardware accelerators can be used to offload some of the
computation-intensive stages of the encryption process away from the
main compute unit.

www.sharcs-project.eu 30 December 20, 2015

3.3. HARDWARE REQUIREMENTS FOR CLOUD APPLICATION

HR-3.2 Monitor network traffic for suspicious or potentially damaging
behaviour (SR-3.1 through SR-3.3): Given that the Cloud applica-
tion relies on network traffic entering and leaving the hypervisors and
cloud site it is important to monitor and react to potentially damaging
activity. The combination of a monitoring system and reactive com-
ponents can help improving the robustness of the platform against
several attack vectors. Given the large amount of traffic that exists in
a cloud site and the importance of reacting in a timely manner it may
be beneficial to have a dedicated hardware monitoring system. In the
case where traffic flows need to be monitored, evaluated and possibly
reacted upon faster than line-rate hardware will be the only possible
solution.

HR-3.3 Uniquely identify components of a computing system and assure
that they are running in an expected mode (SR-3.4, SR-3.5): A
computer in an end-to-end secure system should be identifiable and
changes to its standard runtime operation be detectable and reported.
It is important to assure the end-users that the integrity of the hard-
ware and base software system has not been compromised as all higher-
level security primitives rely on a trusted base.

There are existing mechanisms that already cover HR-3.1 and HR3.3,
such as AES-NI and TPM, respectively. Consequently in WP3, we will focus
more on the HR-3.2 Cloud hardware requirement. In the next paragraph,
we describe some additional Cloud features, which may be interesting or
beneficial to support in hardware.

3.3.2 Hardware application, beneficial features

• Encrypted Memory and I/O: On multi-tenant platforms any breach
or escalation of privileges from a virtual machine residing on the sys-
tem, could potentially expose resources from other end-users. Iso-
lation mechanisms are expected to ensure separation but there may
be flaws by which other memory regions and other shared resources
are exposed. Encrypting memory regions helps to maintain confiden-
tiality of data and protect against injection attacks originating from
outside the trusted region. The presence of a secure Memory Manage-
ment Unit (MMU) allows for protection against memory snooping and
warnings for out of bounds memory access. Future Intel processors are
expected to bring in Software Guard Extensions (SGX)[2] that protect
memory regions in ‘enclaves’. SGX features will come out in (some)
SkyLake processors that offer an inverse sandbox model through 18
new processor instructions (page 203 of https://software.intel.com/
sites/default/files/332680-002.pdf). The availability of this hard-
ware feature is outside of the control of SHARCS but once available

www.sharcs-project.eu 31 December 20, 2015

https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf

CHAPTER 3. HARDWARE SUPPORT FOR APPLICATION REQUIREMENTS

it could be investigated to determine if it offers improved end-to-end
security.

• Hardware assisted isolation mechanisms: To protect the confiden-
tiality of end-users’ data and ensure that only authorised users can
make changes to particular memory regions it may be possible to offer
hardware assisted isolation mechanisms that don’t rely on encryption
alone. ARM’s TrustZone is one such example where devices on a se-
cure bus have extra provisions for security features and look for a
security bit that is orthogonal to any overlaying hypervisor platform.
Only authorised accesses will allow the security bit to be enabled and
allow access to the secure regions.

• Additional security primitives available in new hardware platforms:
During the course of the SHARCS project there will likely be new
security mechanisms and features that become available. Some of
the Instruction Set Architecture modifications expected in future In-
tel platforms include accelerators for certain parts of cryptographic
functions as well as other security enhancing functions2. If there is a
security function that is available in hardware that is widely available,
it makes sense to develop software that can make use of it. There is no
difference in the Cloud case where functionality from the underlying
hardware could be exposed via the virtualisation platform given suf-
ficient incentive/benefit for doing so. These new hardware primitives
that are available in common off the shelf (COTS) equipment will be
assessed as they become available and SHARCS may take advantage
of them.

3.3.3 Application hardware requirements

• Operations - hardware failure rate should be industry standard. Less
failures are better.

• Operations - hardware lifetime should be targeted at typical hardware
refresh rates for the data center. If in the form of a solid state add-
in card the lifetime should approach that of typical RAID and network
cards. One benefit of add-in cards is that they can be migrated to other
machines after the host system has been end-of-life’d.

• Operations - serviceability. Hardware should be easy to service with
the system remaining online while serviced, unless it is a core compo-
nent that needs the system to be powered down (e.g. Motherboard,
CPU, RAM, BIOS/UEFI, add-in card).

2https://software.intel.com/en-us/isa-extensions/

www.sharcs-project.eu 32 December 20, 2015

https://software.intel.com/en-us/isa-extensions/

3.3. HARDWARE REQUIREMENTS FOR CLOUD APPLICATION

• Operations - energy /power. The energy demand should be in line
with similar hardware already in place in existing systems.

• Operations - heat. Related to the energy consumed. The heat output
should be self-regulating to keep it within operational limits and not
require anything other than air cooling. The waste heat produced
should be in line with similar hardware already in place in existing
add-in cards.

• Size / socket - Should use a standard motherboard PCI Express slot3

and conform with PCI card dimensions for existing RAID cards and
hardware that normally goes in data center hardware. Physical con-
straints are limited to that of the standard of the slot / connector used.
Aside from the standardised connector the physical size may be con-
strained by the orientation, air-flow and cooling, as well as the place-
ment of other physical components on the motherboard so is system
dependent.

• Operation - Hardware should work with Linux OS with a driver mod-
ule that is ideally supported by the community.

• Operation - Hardware - to work with Windows will need WHQL certi-
fication.

• Design - the hardware should be self-contained and not rely on shared
memory spaces.

• Interoperability - Hardware should be compatible with standard Intel
Motherboard layout.

• Compatibility - should be compatible with legacy hardware.

• Business - cost. Hardware cost should be in line with market rates.

• Business - Should be ‘free’ (without licence restrictions) to use for com-
mercial usage.

• Business - Performance acceleration per price unit should be greater
than that of the cost of buying another system to be integrated.

• Performance - Using the hardware module, all sub-system performance
should not be degraded by more than 5%

3https://pcisig.com/specifications/pciexpress/

www.sharcs-project.eu 33 December 20, 2015

https://pcisig.com/specifications/pciexpress/

CHAPTER 3. HARDWARE SUPPORT FOR APPLICATION REQUIREMENTS

Figure 3.1: Diagram showing the computing systems involved in the cloud
application.

3.3.4 Hardware assumptions

• Data maintained on the storage system does not suffer from corrup-
tion. Can assure this through multiple replicas and RAID style redun-
dancy with error correction.

• Data stored in the memory subsystem is correct and free from errors
due to ECC.

• Transmission of information in cables is error free. This allows for
data correction at end-points that corrects non-malicious modification
of the data due to erroneous transmission4.

4https://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/
integrity.html

www.sharcs-project.eu 34 December 20, 2015

https://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/integrity.html
https://www.fsl.cs.sunysb.edu/docs/integrity-storagess05/integrity.html

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Proceedings
of the 12th ACM conference on Computer and communications security, pages 340–353.
ACM, 2005.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu based
attestation and sealing. In Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, page 10, 2013.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, pages 30–40. ACM, 2011.

[4] ISO. Information technology – Security techniques – Entity authentication – Part 2:
Mechanisms using symmetric encipherment algorithms, ISO/IEC 9798-2:2008. Inter-
national Standard, 2nd ed., 1999.

[5] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. Trustlite: A security archi-
tecture for tiny embedded devices. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 10:1–10:14, New York, NY, USA, 2014. ACM.

[6] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B. Pre-
neel, I. Verbauwhede, and F. Piessens. Sancus: Low-cost trustworthy extensible net-
worked devices with a zero-software trusted computing base. In Proceedings of the
22Nd USENIX Conference on Security, SEC’13, pages 479–494, Berkeley, CA, USA, 2013.
USENIX Association.

[7] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming:
Systems, languages, and applications. ACM Transactions on Information and System
Security (TISSEC), 15(1):2, 2012.

[8] R. M. Seepers, C. Strydis, P. Peris-Lopez, I. Sourdis, and C. I. De Zeeuw. Peak misde-
tection in heart-beat-based security: Characterization and tolerance. In Engineering in
Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the
IEEE, pages 5401–5405. IEEE, 2014.

[9] R. M. Seepers, C. Strydis, I. Sourdis, and C. De Zeeuw. Enhancing heart-beat-based
security for mhealth applications. IEEE journal of Biomedical and Health Informatics
(JBHI), –(-):1–9, 2015.

[10] R. M. Seepers, C. Strydis, I. Sourdis, and C. De Zeeuw. On using a von-neumann
extractor heart-beat-based security. In Security and Privacy in Computing and Commu-
nications (TrustCom), 2015 14th IEEE International Conference, pages 1–8. IEEE, 2015.

47

BIBLIOGRAPHY

[11] C. Strydis, R. M. Seepers, P. Peris-Lopez, D. Siskos, and I. Sourdis. A system architec-
ture, processor, and communication protocol for secure implants. ACM Transactions on
Architecture and Code Optimization (TACO), 10(4):57, 2013.

[12] C. Strydis, D. Zhu, and G. N. Gaydadjiev. Profiling of symmetric-encryption algorithms
for a novel biomedical-implant architecture. In Proceedings of the 5th conference on
Computing frontiers, pages 231–240. ACM, 2008.

[13] C. Takano and Y. Ohta. Heart rate measurement based on a time-lapse image. Medical
engineering & physics, 29(8):853–857, 2007.

www.sharcs-project.eu 48 December 20, 2015

	Introduction
	System Architectures
	System Architecture for an Implantable Medical Device
	System Architecture for Automotive applications
	General description of a typical ECU
	General description of a typical car network
	General description of a connected car

	System Architecture for Cloud Computing
	Background
	Trusted Platform Module (TPM)
	Instruction set extensions for security acceleration (e.g. AES-NI)
	Add-in cards
	OnApp Cloud requirements
	Unified Extensible Firmware Interface (UEFI)

	Hardware support for application requirements
	Hardware Requirements for Implantable Medical Devices
	Hardware Requirements for Automotive applications
	Hardware security requirements
	Hardware application requirements

	Hardware Requirements for Cloud Application
	Security requirements - hardware
	Hardware application, beneficial features
	Application hardware requirements
	Hardware assumptions

	Current progress and future plans on hardware security mechanisms
	Secure microprocessor architectures
	Instruction Set Randomization
	Control Flow Integrity
	SISC: customized processor for security

	Secure Memory Architectures
	Encryption of shared memory data
	Data Integrity
	Secure MMU
	Instruction ROM memory

	Secure communication
	Secure IMD communication
	Secure Cloud communication

	Mapping of Hardware Techniques to Hardware Requirements

