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Abstract—The time interval between consecutive heartbeats
(interpulse interval, IPI) has previously been suggested for
securing mobile-health (mHealth) solutions. This time interval
is known to contain a degree of randomness, permitting the
generation of a time- and person-specific identifier. It is commonly
assumed that only devices trusted by a person can make physical
contact with him/her, and that this physical contact allows each
device to generate a similar identifier based on its own cardiac
recordings. Under these conditions, the identifiers generated by
different trusted devices can facilitate secure authentication.
Recently, a wide range of techniques have been proposed for
measuring heartbeats remotely, a prominent example of which
is remote photoplethysmography (rPPG). These techniques may
pose a significant threat to heartbeat-based security, as an
adversary may pretend being a trusted device by generating a
similar identifier without physical contact, thus bypassing one of
the core security conditions. In this paper, we assess the feasibility
of such remote attacks using state-of-the-art rPPG methods. Our
evaluation shows that rPPG has similar accuracy as contact PPG
and, thus, forms a substantial threat to heartbeat-based-security
systems that permit trusted devices to obtain their identifiers
from contact PPG recordings. Conversely, rPPG cannot obtain an
accurate representation of an identifier generated from electrical
cardiac signals, making the latter invulnerable to state-of-the-art
remote attacks.

I. INTRODUCTION

The time interval between consecutive heartbeats (cardiac
interpulse interval, IPI) is a unique biometric feature which
may be used to facilitate security in mobile health (mHealth)
solutions, such as body-area networks (BANs) or implantable
medical devices (IMDs). In contrast to conventional biomet-
rics, which uses a person’s unique physiological features to
generate a long lasting person-unique identifier [1], the IPI
is a time-varying feature that is known to contain a degree
of randomness, making it possible to derive a person- and
time-unique identifier from it [2]–[4]. This identifier should
be difficult to guess, yet, it is possible to obtain (roughly) the
same identifier by simultaneously measuring a cardiac signal
of the same person [2], [5]. It is commonly assumed that
physical contact is required for measuring these cardiac signals
and that only devices trusted by a person can make physical
contact with him/her. Under these assumptions, two trusted
devices may authenticate with each other if their identifiers are
similar enough, permitting a (small) disparity between them
given the noisy nature of biometric data [3], [5]–[7].

While most studies that suggest heartbeat-based security
(HBBS) for mHealth assume that physical contact is required
to generate the same identifier from IPIs, an increasing
number of studies suggest that heartbeats may be measured
remotely using, for example, Doppler radar [8], capacitive
coupling [9], optical vibrocardiography [10], ballistocardio-
graphy [11], (thermal) imaging [12], [13] and even through
detecting minute difference in a person’s voice [14]. Such
techniques are primarily intended to have a positive impact
on healthcare, for example, by monitoring an infant incubator
without touching the frail infant [15]. Nevertheless, they may
also provide an adversary with a tool for compromising
heartbeat-based security through generating an identifier which
is similar enough to those generated by a trusted (on-body)
device without requiring physical contact. One of the most
prominent threats to heartbeat-based security is remote photo-
plethysmography (rPPG) [16], which measures subtle color
variations of a human skin surface using a regular RGB
camera [17]. These color variations occur due to changes
in the blood volume of human tissue (caused by cardiac
contractions), which modify the light absorbed (and reflected)
by it. Compared to other non-contact heartbeat-monitoring
methods, we expect that rPPG is a particularly strong threat to
heartbeat-based security as [16]: (i) it relies on relatively cheap
equipment, (ii) it is relatively unaffected by environmental
noise and (iii) it can be used from a long distance. Moreover,
the (RGB) cameras used by rPPG are ubiquitous in today’s
society (e.g., webcams, laptops or smartphones), which may
allow an adversary to launch a proxy attack: For example, an
adversary may hack a person’s laptop, gain access to its camera
and, subsequently, launch an rPPG-based remote attack.

In this paper, we examine whether an adversary could
compromise an HBBS system through measuring heartbeats
remotely using rPPG. To this end, we implement three state-
of-the-art rPPG algorithms called CHROM [13], PBV [18]
and 2SR [19], and evaluate how accurately these algorithms
can obtain IPIs compared to a reference contact PPG (cPPG)
sensor, which is often considered as a trusted device in related
work [2], [4], [5]. We consider a wide range of settings and
parameters that are expected to affect the accuracy of rPPG
(and thus security) in practice, including subjects with different
skin tones, different light sources, types and intensities of
movement, video compression and camera-frame rate. Based
on our evaluation, we discuss the threat of remote attacks on
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Fig. 1: Generation of a biometric identifier using IPIs, here
depicted for an ECG recording.

HBBS and highlight that only identifiers which are generated
from electrical cardiac recordings are safe from such attacks.
To the best of our knowledge, this is the first study that
considers the threat of remote attacks on an HBBS system
in detail.

The rest of this paper is structured as follows: We first
describe how IPI-based identifiers have commonly been gen-
erated and used for authentication in Section II. In Section III,
we review related works that detail how similar the identifiers
of trusted devices are, as well as studies that consider remote
attacks on HBBS. Section IV describes how an adversary
could bypass security using rPPG and details the implemented
rPPG algorithms. We evaluate how accurately these rPPG
algorithms can detect IPIs compared to cPPG in Section V
and discuss the practical implications for HBBS in Section VI,
after which concluding remarks are provided.

II. BACKGROUND: HEARTBEAT-BASED SECURITY

The IPI is defined as the time difference between two
consecutive heartbeats, i.e., IPI(i,i+1) = beati+1 − beati.
It is known that each IPI contains a degree of randomness,
which is caused by the balancing action between the sym-
pathetic and parasympathetic nervous systems and which is
affected by various (physiological) factors such as smoking,
age, gender, emotional and physical state [20], [21], [22]. This
randomness makes it possible to derive a unique biometric
identifier from IPIs, one prominent way of which is depicted
in Figure 1 [2], [3], [5], [23]. First, each device measures
a cardiac biosignal (using, for example, electrocardiography
(ECG), blood pressure (BP) or PPG), performs peak detection
to detect heartbeats (cardiac contractions) and calculates IPIs
from consecutive heartbeats. These IPIs are represented as a
binary value (in this work assumed to be 8-bit long value),
which represents the number of sampling points between two
heartbeats as measured by a device and, therefore, depends
on both: (i) the actual time span between two heartbeats; and
(ii) the sampling frequency of a cardiac sensor. From these
IPIs, a predefined set of bits is selected: The most-significant
bits may be excluded from identifier generation as they are
relatively easy to predict, while the least-significant bits may
be excluded as they are subject to a high degree of noise,
making them difficult to match between different devices. As
biometric data is noisy, the selected IPI bits are encoded (using

Gray coding), after which a biometric identifier is formed by
concatenating the Gray-coded bits obtained from several IPIs.

If multiple trusted devices simultaneously measure a cardiac
signal from the same person, they are expected to generate a
similar identifier. A communication protocol may subsequently
use these identifiers for authentication purposes [3], [7]. Note
that as biometric data is noisy, these identifiers are required
to be similar, yet, not identical. Therefore, authentication is
successful if these identifiers are similar enough, i.e., a certain
disparity between these identifiers is expected and tolerated.

III. RELATED WORK

An adversary may try to (illegitimately) gain access to an
HBBS system by either: (i) generating a biometric identifier
(remotely) that is similar enough to an identifier obtained by
trusted (on-body) device, as discussed later in Section IV;
and/or (ii) finding a flaw in the protocol (or underlying prim-
itives) that uses these identifiers for authentication. While the
security of an HBBS system could be compromised through
either of these methods, related work has mostly focused on
(ii) by both identifying flaws in existing HBBS protocols and
proposing new ones [3], [7], [24]. In this paper, we aim to
assess the feasibility of (i), i.e., if an adversary may authen-
ticate to an mHealth device illegitimately through remotely
obtaining an identifier similar to that of a trusted device. Such
an attack could work regardless of the underlying protocol
and could therefore form a serious threat to HBBS systems in
general. Accordingly, we first review the expected disparity
between two trusted identifiers (i.e. identifiers obtained by
trusted devices). Afterwards, we discuss existing studies that
evaluate the feasibility of a remote attack and highlight how
our work differs from this related work.

A. Trusted-identifier disparity

Related work describes that the time interval between con-
secutive heartbeats (IPI) is expected to differ between trusted
devices even if they correctly detect these heartbeats. This
disparity can be attributed to inter-sensor variability (VARis),
that is, the variance between two cardiac recordings due to,
for example, the variable pulse-transition time of ventricular
contraction to the rest of the body due to pressure differences.
The effect VARis has on the disparity between two devices
depends of, among others, where and what type of cardiac
signal is recorded and the physiological state of the subject.

Related works have studied the expected disparity due to
VARis for different types of cardiac recordings: 1) ECG-
cPPG: One identifier is generated from an ECG (chest) and
another from a cPPG recording (finger) [2], [5]; 2) ECG-BP:
One identifier is generated from an ECG (chest) and another
from a blood-pressure recording (finger) [2], [5]; and 3) ECG-
ECG: Both identifiers are obtained from ECG recordings (on
the chest) [3], [25]. We present the average bit-error rate (BER)
found in each of these studies in Table I (for the 6 least-
significant IPI bits). In either model, the BER is highest for the
least-significant bits (LSBs) and reduced for more significant
bits, i.e., the LSBs are harder to match. Moreover, note that
the disparity between two ECG recordings is considerably



2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2691282, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. X, DATE XX-XX-XXXX 3

TABLE I: Average bit-error rate for different models of
V ARis between trusted devices.

IPI bit #Dataset 0 1 2 3 4 5
ECG-cPPG [26] (250 Hz*) – 0.37 0.23 0.15 0.07†

ECG-BP [27] (250 Hz) 0.46 0.29 0.15 0.08 0.04 0.02
ECG-ECG [3] (360 Hz) 0.08 0.04 0.02 0.01 0.00 0.00

* Derived result from Figure 4 in the paper, resampled from 1000 Hz at 250
Hz.
† BER results for bits 4-5 are reported together in the paper.

lower than an ECG and PPG/BP recording: ECG monitors the
electric signal which induces cardiac contraction, whereas PPG
and BP depend on changes in blood volume following cardiac
contraction. The latter is affected by several physiological
phenomena (e.g., pressure differences, the strength of cardiac
contractions, etc.), explaining the higher BER.

A second phenomenon that introduces disparity between
trusted identifiers is heartbeat misdetection. For example, a
device may fail to detect a heartbeat (or detect an extra
one) due to, among others, movement artifacts. While ex-
isting, advanced heartbeat-detection algorithms report a high
detection accuracy between 99%-99.9% [28]–[30], it has been
demonstrated that even a single misdetected heartbeat can
cause a significant and unbounded disparity between two
identifiers if left unchecked [7], [27]. Nevertheless, heartbeat
misdetection can – to some extent – be tolerated through
periodic resynchronization during identifier generation [7].

B. Remote attacks

Two existing studies report on the feasibility of remote
attacks [3], [31]. In both studies, the probability of a successful
remote attack is assessed by placing a 30-FPS (frames per
second) webcam at a distance of 50 cm from a subject’s face.
This setup closely models the situation in which the subject is
working on his/her laptop and where an adversary has gained
access to the laptop’s camera (i.e., a proxy attack). Despite this
similarity, both studies report substantially different results:
While Rostami et al. [3] suggests that the 4 LSBs of an IPI can
be detected with a 50% accuracy (i.e., no better than guessing
the value of an IPI), Calleja et al. [31] describes that over 75%
of these LSBs can be detected accurately (compared to an on-
body sensor). It should be noted, however, that several crucial
details are not provided (e.g., the type of on-body sensor [3] or
the used rPPG algorithm [31]), making it difficult to interpret
these results. Nevertheless, these studies motivate us to further
investigate the feasibility of remote attacks.

In this work, we evaluate the threat of a remote attack
in substantially more detail than related works, considering
multiple rPPG algorithms and a wide range of parameters
and phenomena that are expected to influence these attacks in
practice, including skin tone, different light sources, motion
and different video formats.

IV. REMOTE ATTACKS USING RPPG

Authentication in HBBS is successful if two identifiers
are similar enough. While it is commonly assumed that only
trusted devices can generate such similar identifiers, we note

that cardiac contractions induce acute changes in blood volume
throughout the body that can be measured remotely (i.e.,
without physical contact) based on, for example: (i) acute tem-
perature differences (thermal imaging) [12]; (ii) involuntary
movement, e.g., head motion (ballistocardiography, Doppler
radar) [8], [11]; and (iii) changes in skin color (remote
PPG) [13]. Such remote measurements may be used by an
adversary to obtain an identifier that is similar enough to
an identifier generated by a trusted (on-body) device and,
in that way, illegitimately authenticate to trusted devices.
In particular, we consider rPPG as a likely candidate for
launching a remote attack on an HBBS system as, according
to a recent survey [16], rPPG – compared to other non-contact
heartbeat-monitoring methods: (i) requires relatively cheap
equipment (a regular RGB camera) (ii) is relatively unaffected
by environmental noise; and (iii) can be used from a long
distance. Moreover, the cameras used for deploying such an
attack are ubiquitous in today’s society and can be found in,
among others, webcams, laptops and smartphones. This may
facilitate proxy attacks, in which an adversary obtains access to
a target’s own laptop and uses the on-board camera to launch
a remote attack.

One of the key challenges for rPPG is to distinguish
color differences in an RGB signal due to changes in blood
volume (cardiac contractions) from those caused by, among
others, luminance or motion. A widely applicable and reliable
remote attack would overcome these issues to maximize the
probability of breaching security. While several such rPPG
algorithms have recently been proposed [32], the evaluation of
these algorithms rarely reports on how accurately individual
heartbeats can be detected, making it difficult to directly assess
the feasibility of a remote attacks from existing studies. To this
end, we choose to implement and evaluate three state-of-the-
art rPPG algorithms1 which – based on a recently published
survey [32] – are expected to have a high detection accuracy:

• Chrominance (CHROM) [13]: The CHROM algorithm
assumes specular reflection and intensity variations as the
common challenges for accurate rPPG. It removes the
specular reflection first by projection on the chrominance
plane and removes remaining distortions (primarily the
intensity variations) in the pulse-signal by a real-time
tuning.

• Blood-volume pulse vector (PBV) [18]: PBV uses a pre-
calculated blood-volume pulse vector (a unit-length color
vector) as a prior to compute the weights for extracting
the pulse from the RGB color-channels and suppress the
(motion-induced) distortions.

• Spatial Subspace Rotation (2SR) [19]: The 2SR algorithm
obtains a set of skin pixels from its RGB input and
transforms it into a spatial subspace. This subspace is
subsequently tracked over time to detect changes in
hue, where the hue-change is measured as the temporal
rotation of the spatial subspace of skin-pixels. Since
the pulse-signal is extracted from the hue only, 2SR
is inherently independent of all intensity and color-

1A detailed explanation of these algorithms and the main differences
between them can be found in [32].
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saturation variations, which particularly benefits the sit-
uations where (motion-induced) intensity changes and
specular-reflection variations dominate the RGB signal.

V. EVALUATION

A successful remote attack can be mounted if rPPG can
obtain IPIs with similar accuracy as a trusted device. We next
evaluate this accuracy for a wide range of recording parameters
and physiological phenomena, using a cPPG sensor as a model
for a trusted device (a choice commonly made in related
work [2], [4], [5]). We next detail our experimental setup,
after which our evaluation ensues in Subsection V-B.

A. Experimental Setup

In this subsection, we first describe the setup used to create
a dataset of rPPG and cPPG signals for a wide range of pa-
rameters. Afterwards, we discuss the metrics used to evaluate
how accurately rPPG can measure IPIs compared to cPPG.
This study has been approved by the Internal Committee
Biomedical Experiments of Philips Research and informed
consent has been obtained from each subject participating in
our experiments.

1) Dataset: To evaluate the feasibility of remote attacks,
we constructed a dataset containing 71 video sequences and
corresponding cPPG recordings. The videos were recorded
with a regular RGB video-camera2, which provides a spatial
resolution of 768×576 pixels, 8-bit depth and a frame rate of
20 FPS, and were stored in an uncompressed bitmap format
and constant frame-rate. The cPPG recordings were obtained
using a finger-based transmissive pulse oximeter3 and were
synchronized with the video frames.

It is expected that a remote attack is most likely successful
if a subject is stationary and proximal to the camera, as
it minimizes the environmental influences that distort the
rPPG signal. We expect that such a setting can occur in
practice (e.g., a proxy attack on a patient working from
his or her laptop) and, thus, forms a primary concern for
the security of an HBBS system. As a default setup we,
therefore, place the camera approximately 1 meter in front
of the subject at rest (sitting), resulting in approximately
30,000 skin-pixels in each image. The default subject is a
male adult with skin-type III according to the Fitzpatrick
scale with his face visible on the camera [33]. The subject is
illuminated by a frontal fluorescent lamp4 and the duration
of each recording is around 90 seconds (i.e., 1800 frames
by a 20 FPS camera). It is expected that the accuracy at
which individual IPIs can be detected using rPPG depends
on various physiological phenomena and parameters, such
as skin composition (fat), arterial stiffness, skin temperature,
skin tone, motion and luminance. While several of these
parameters (e.g., arterial stiffness) cannot be controlled or
measured in our experiments, we investigate the accuracy
at which rPPG can detect heartbeats in a wide range of
circumstances by varying the following parameters of our

2Global shutter RGB CCD camera USB UI-2230SE-C from IDS.
3ContecMedical model CMS50E.
4Philips HF3319 - EnergyLight White.

default setup:

• Skin tone: Skin tone directly influences the light
reflected from the skin (primarily the diffuse reflections that
contain pulsatile information [19]) and is, therefore, expected
to affect rPPG signal quality. To investigate if a part of
the population is at a greater risk of remote attacks, we
record rPPG and cPPG from 15 subjects with various skin
tones. These subjects were categorized into three skin-types
based on the Fitzpatrick scale: 5 Western European subjects
(skin-type I-II), 5 Eastern Asian subjects (skin-type III), and
5 Sub-Sahara Africa/Southern Asian subjects (skin-type IV-V).

• Light source: Related work has found that color variations
due to blood-volume changes are primarily expressed in the
green wavelength [13]. It may become harder (or easier) to
identify these color variations if different (types of) light
sources are used, hence, affecting the accuracy of rPPG. We,
therefore, change the (fluorescent) light source employed
in our default setup (using our default test subject with
skin-type III) to 6 different sources, including red, green,
blue, red-green, red-blue and green-blue LED lamps5.

• Motion: Motion is a challenging factor for accurate
rPPG as it distorts the light reflected from (a particular patch
of) skin [19]. In practice, motion occurs in a wide range of
circumstances which would allow an adversary to launch
an attack on a unknowing subject, for example, a subject
walking on the street or sitting on the bus. To evaluate the
effect of motion on rPPG accuracy, we record 1 video from
our default subject whilst rotating his head continuously (with
a rotation angle between 160 and 180 degrees and at a rate of
roughly 2 seconds per rotation), as this form of motion was
previously found to be a substantial challenge for rPPG [34].

• Exercise recovery: To evaluate the robustness of rPPG
with respect to pulse-rate changes, a series of videos is
recorded to analyze the pulse-rate recovery after exercise. We
recruited 6 subjects (3 males and 3 females) of skin-types
I-III to participate in this evaluation. Each subject performed
3 different levels of running (with different intensities)
by adjusting the speed and gradient of a treadmill: low
(gradient=12◦, speed=4-5 km/h), medium (gradient=14◦,
speed=5-6 km/h), and high (gradient=15◦, speed=7-8 km/h).
The duration of each running exercise is 3 minutes. After the
exercise, the subject immediately sits in front of the camera
for a recording.

• Video compression: It is not uncommon for e.g.
webcams to employ (on-board) compression on their raw
input signal, resulting in a lower signal quality. As rPPG may
be mounted from such commodity hardware, we compress the
15 (uncompressed) videos recorded in the skin-tone category
with Motion JPEG encoding (the default implementation
of Motion JPEG 2000 in MATLAB), which is commonly
employed in commercially available cameras, and evaluate

5Philips LivingColors Bloom.
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Fig. 2: Whisker plot depicting the BER (bit-0 to bit-3) of the
rPPG algorithms for the entire dataset. Outliers are indicated
as red crosses.

the resulting rPPG accuracy [35].

• Video frame-rate: While our baseline setup exploits
a 20-FPS camera, related work that studies identifiers
generated by trusted (contact) devices typically reports on
substantially higher sampling rates (≥ 250 Hz) [3], [26], [27].
While such high sampling rates cannot be obtained using
the recording equipment available to us, we record 1 video
at a frame rate of 50 FPS (the fastest setting possible for
our camera) to identify if a higher frame rate can yield an
improvement in accuracy.

2) Evaluation metrics: A feasible remote attack on our
emergency-access scheme requires that individual heartbeats
are detected correctly and accurately. We first measure how
many heartbeats are detected correctly by rPPG, using cPPG as
a point of reference. We report this result in terms of the false-
positive rate (FPR) and the false-negative rate (FNR), i.e., the
rate at which rPPG incorrectly detects signal artifacts as heart-
beats and the rate at which rPPG fails to detect true heartbeats,
respectively. Heartbeats in both the rPPG and cPPG recordings
were detected using an in-house, validated peak-detection
algorithm, after which FNR and FPR were determined. While
the cPPG and rPPG recordings were synchronized at the
start of their recordings, we allowed some slack between the
recordings by considering any two heartbeats, which were
detected by both cPPG and rPPG within a range of 25% the
camera-frame rate of each other, as a true positive.

After identifying the FNR and FPR, we have obtained a
set of heartbeats that are correctly detected by both rPPG
and cPPG. We derived IPIs from consecutive heartbeats that
were detected correctly and determined how accurately rPPG
can obtain IPIs compared to cPPG. In line with related work,
this accuracy is reported in terms of the average bit-error rate
(BER), i.e., the average rate at which a particular rPPG-based
IPI bit does not match a cPPG-based one.

B. Experimental Results

We next evaluate how accurately rPPG may obtain IPIs
compared to cPPG. We first compare the three rPPG algo-
rithms by considering their detection results for our entire
dataset as a whole, after which we discuss the results for
individual dataset parameters in more detail.

Figure 2 depicts a statistical comparison of the BER ob-
tained by the different rPPG algorithms for the entire param-
eter space. The most significant bits (bit 4 onwards) were

TABLE II: FPR, FNR and BER results for various datasets
using the 2SR algorithm.

BERCategory Type FPR FNR bit 0 bit 1 bit 2 bit 3
Type I-II 0.02 0.02 0.34 0.02 0.00 0.00
Type III 0.01 0.01 0.48 0.10 0.00 0.00Skin tone

Type IV-V 0.05 0.04 0.47 0.24 0.02 0.00
Fluorescent 0.00 0.00 0.44 0.01 0.00 0.00Light

source Various 0.00 0.01 0.50 0.46 0.00 0.00
Stationary 0.00 0.00 0.44 0.01 0.00 0.00Body

motion Rotation 0.01 0.01 0.61 0.29 0.00 0.00
Low 0.01 0.01 0.47 0.06 0.00 0.00
Mid 0.02 0.03 0.32 0.72 0.00 0.00Exercise

recovery High 0.05 0.05 0.40 0.59 0.00 0.00
uncompr. 0.03 0.02 0.43 0.12 0.01 0.00Video

compression compr. 0.07 0.05 0.46 0.17 0.02 0.00
20 FPS 0.00 0.00 0.44 0.01 0.00 0.00Frame rate 50 FPS* 0.02 0.00 0.12 0.00 0.00 0.00

* Rescaled to 25 FPS to be inline with other reported BERs.

always detected correctly (BER = 0.0) and are, therefore, not
depicted. For each of the algorithms, we find a high BER
≈ 0.5 for the least-significant IPI bit in an rPPG recording (bit
0) obtained using a 20-FPS camera, i.e., rPPG cannot detect
this bit with high accuracy. The BER is gradually reduced
when moving to more significant bits, indicating that rPPG
can detect these bits with improved accuracy. The globally
averaged BER values of bit-0 through bit-3 are: (i) CHROM
- 0.43, 0.24, 0.00, 0.00; (ii) PBV - 0.45, 0.30, 0.03, 0.00; and
(iii) 2SR - 0.42, 0.21, 0.00, 0.00. Our evaluation suggests that
the 2SR algorithm detects IPIs with (slightly) better accuracy
than the CHROM and PBV algorithms.

We next consider the effect of various, individual parameters
on the detection performance. Table II reports the FNR, FPR
and BER for the various categories in our dataset obtained
using the 2SR algorithm (the CHROM and PBV algorithms
show similar albeit slightly worse results and are, therefore,
not discussed in detail). Starting with different skin tones, we
find that a darker skin makes heartbeats both more difficult
to detect accurately (increased BER). This is explained by
the higher melanin content in dark skin compared to light
skin which reduces the diffuse reflections that contain pul-
satile information, lowering signal quality and, accordingly,
detection performance. In a similar way, we notice that the
detection performance depends on the illumination spectrum.
From the various light-sources that we tested, the fluorescent
lamp gives the highest performance, while light sources with
a less balanced radiation energy in the RGB channels seem to
reduce the detection accuracy, even for stationary subjects.

Motion (rotation of the head) affects the accuracy of rPPG
as it distorts the amount of light reflected from the skin to the
camera. While rotation can be considered as a relatively easy
challenge for rPPG (as the motion pattern is regular [19]), it
still leads to a substantial increase in BER. Besides, we find
that the accuracy of rPPG is greatly reduced when obtained
from subjects during exercise recovery. These subjects often
sweat profusely and breathe heavily which results in unin-
tended body motion and, accordingly, a reduction in detection
accuracy (albeit not as substantial as when rotating the head,
which yields more severe body motion).

In terms of hardware (video) parameters, we notice that
video compression yields a substantial increase in terms of
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FPR and FNR, yet hardly affects BER. That is, the employed
compression sometimes causes signal artifacts that result in
incorrectly detected heartbeats, yet it does not noticeably
affect the time interval between correctly detected heartbeats.
Finally, we increase the camera-frame rate to 50 FPS and
record one video from our default subject. A fair comparison
between this and our other experiments – which employ a 20-
FPS camera – requires that the individual IPI bits represent
a similar frequency content. To this end, we first halve the
IPI values obtained using our 50 FPS experiment prior to
calculating the BER, effectively representing the BER values
as-if they were obtained using a 25 FPS camera6. Note that
the BER is considerably lower than when a 20 FPS camera is
used, i.e., a higher camera-frame rate can increase the accuracy
of rPPG.

VI. DISCUSSION

In the previous Section, we evaluated the accuracy at
which rPPG can obtain IPIs for a wide range of factors and
demonstrated that rPPG can obtain IPIs with similar accuracy
as a cPPG sensor in various cases. A successful remote attack
requires that an adversary obtains IPIs with similar accuracy
as trusted devices. We may, thus, assess the threat of a remote
attack by comparing the accuracy of rPPG (compared to
a reference cPPG sensor) to the expected BER for trusted
devices (discussed in Section III).

Table III presents the expected BER for an adversary (rPPG-
cPPG) and various BER-models for trusted devices. Here, we
compare the results obtained using our 50-FPS camera setup
as it both: (i) models a remote attack in a realistic setting;
and (ii) has the lowest BER among our experiments. That
is, these results can be used to determine the (worst case)
security performance of a heartbeat-based-security system.
Note that the sampling (frame) rates used in our experiments
are considerably lower than those reported for trusted (contact)
devices. To facilitate a more direct comparison between these
results, we again rescale the rPPG results to represent a similar
frequency content (in doing so, we effectively shift the BER
results of our 50-FPS camera to more-significant bits).

Let us first consider the feasibility of a remote attack
on an HBBS system that allows trusted devices to obtain
their IPIs using both electrical (ECG) and blood-volume-based
cardiac recordings (BP and PPG). Such systems are often
designed to tolerate the relatively high BER expected between
such recordings (i.e., the ECG-BP and ECG-cPPG entries
in Table III). Related work that proposes to secure mHealth
using such systems – and which assumes that an adversary
can only guess the value of a biometric identifier – often
suggests that the most secure identifiers are generated from the
most-significant IPI bits (from IPI-bit position 3 onwards) [4],
[27], [36]. Our comparison in Table III, however, suggests

6Recall from Section II that an IPI value is determined by the number of
sampling points that can be measured by a sensor between two heartbeats.
Halving the sampling frequency means obtaining half the sampling points and,
hence, would result in half the IPI value, effectively shifting the BER results
by 1. For completeness, the actual BER values obtained using our 50-FPS
camera (without rescaling) were 0.44, 0.12, 0.00 and 0.00, respectively, for
IPI bits 0 through 3.

that rPPG may detect these IPI bits with similar accuracy as
trusted devices, even using the relatively cheap (commodity)
hardware employed in our study. In other words, we expect
that an adversary can generate an identifier that is similar
enough to those employed in such an HBBS systems and,
thus, compromise security.

A more constrained HBBS system requires all trusted
devices to measure their cardiac signals electrically. This limits
which mHealth devices can rely on HBBS for authentication,
as electrical cardiac signals (e.g., ECG) may not be detected
throughout the human body. Nevertheless, it also lowers
the BER significantly as these signals are less substantially
affected by noise, as reported for the ECG-ECG entry in
Table III. This low BER permits such HBBS systems to
employ secure identifiers that are formed from the 4 least-
significant IPI bits (bits 0-3) [3], [7], [23]. In our study, we
were unable to obtain an accurate representation of these IPI
bits with rPPG, even under our best measuring conditions
(stationary subject with a light skin color, fluorescent-light
source and a camera-frame rate of 50 FPS). Moreover, related
work has found these bits to be independently distributed,
i.e., even if the most-significant IPI bits are captured using
rPPG, they cannot be used to estimate the value of an iden-
tifier generated from the least-significant IPI bits [23], [36].
Our results, thus, suggest that state-of-the-art rPPG methods
cannot provide an adversary with an advantage over merely
guessing the value of an identifier, provided that electrical
cardiac signals are enforced in the HBBS system. It may be
suggested that improving the rPPG algorithm (or otherwise
improving the experimental setup by, among others, increasing
the camera-frame rate) could further improve the accuracy of
rPPG. However, we do not expect that such efforts would
significantly increase the threat of remotely attacking these
systems, due to the following reasons:

• Commodity hardware often records at a default camera-
frame rate of 50 FPS. A more precise rPPG recording
would require a higher frame rate, which makes it difficult
(or impossible) for an adversary to launch a proxy attack
(as it requires overriding the default settings of the
targeted subject’s camera). As such, the adversary would
be required to be proximal to his target (subject), which
significantly lowers the probability (and, thus threat) of a
remote attack;

• Even if an adversary is proximal to his target and can
record at an appropriate frame rate, our results suggest
that the target has to be relatively stable, favorably
illuminated, with a highly pulsatile body-part, like face
or palms, exposed. These requirements make it unlikely
that an adversary could launch such an rPPG attack in
practice; and

• The electric signal representing heartbeats (the “R-peak”
in an ECG) contains substantially higher frequency com-
ponents that are absent in (generic) PPG. Related work
has already described that contact PPG cannot measure
the least-significant IPI bits with high accuracy (as can
be seen for the ECG-cPPG entry in Table III). It can
be assumed that rPPG is susceptible to stronger noise
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TABLE III: Comparison of average BER for various contact-sensor models
(ECG-ECG, ECG-BP and ECG-PPG) and rPPG.

Freq. IPI bit #Dataset (Hz) 0 1 2 3 4 5 6 7
ECG-BP [27] 250 0.46 0.29 0.15 0.08 0.04 0.02 0.01 0.00
ECG-cPPG [26] 250* – 0.37 0.23 0.15 0.07† – –
rPPG-cPPG 200? – – 0.44 0.12 0.00 0.00 0.00 0.00
ECG-ECG [3] 360 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00
rPPG-cPPG 400? – – – 0.44 0.12 0.00 0.00 0.00

* Derived result from Figure 4 in the paper, resampled from 1000 Hz at 250 Hz.
† BER results for bits 4-5 are reported together in the paper.
? Rescaled rPPG results to represent a similar frequency content per IPI bit as reported in related
work. These results were obtained from a stationary subject with a light skin tone under fluorescent
light and recorded using a 50-FPS camera.

influences (e.g., luminance variations) than cPPG. In
other words, even in the unlikely case that an adversary
could launch a remote attack using rPPG, we expect that
it may, at best, be comparable to the result obtained with
a contact PPG-sensor, which does not suffice to measure
the least significant IPI-bits.

A final point of discussion is if our study sufficiently
captures all aspects pertinent to a remote attack. While our
experimental setup considers a wide range of parameters
that affect rPPG quality, we have only considered these in
the context of a single subject sitting in front of a camera
(effectively modeling a subject sitting in front of his or her
laptop). It, thus, remains to be seen if a remote attack could
be launched in all possible scenarios: For example, it may
be more difficult to correctly detect a subjects IPIs if he or
she is moving or is in a crowd. Furthermore, we have so
far implicitly assumed that a remote attack can directly be
launched on any wearable or implantable device that employs
HBBS. Such devices may, however, face additional security
measures that can thwart such attacks: Modern implantable
cardiac defibrillators (ICDs), for example, require that the ICD
is first activated using short-range (< 10 cm) communication
before enabling long-range communication. In such cases, an
adversary (or an accomplice) would first have to activate the
long-range communication by getting in close proximity to a
target subject, severely limiting the practicality of a remote
attack. While the security of existing implementations of this
mechanism is questionable [37], we recommend that future
work further explores if such mechanisms could hamper a
remote attack.

VII. CONCLUSIONS

In this paper, we evaluated the feasibility of attacking an
HBBS system through measuring heartbeats remotely using
rPPG. Our evaluation reveals that an adversary may use
rPPG to generate a biometric identifier with accuracy similar
to trusted devices that obtain their heartbeats from cPPG
or BP recordings, allowing an adversary to breach security.
Conversely, it is unlikely that rPPG can generate an identifier
that is highly similar to those obtained by trusted devices
which employ electrical cardiac recordings (e.g., ECG), even
under ideal measurement conditions. We, therefore, expect that
heartbeat-based security can be considered secure as long as
it is strictly based on electrical cardiac recordings.
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