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Abstract—Many modern defenses rely on address space lay-
out randomization (ASLR) to efficiently hide security-sensitive
metadata in the address space. Absent implementation flaws, an
attacker can only bypass such defenses by repeatedly probing the
address space for mapped (security-sensitive) regions, incurring
a noisy application crash on any wrong guess. Recent work shows
that modern applications contain idioms that allow the construc-
tion of crash-resistant code primitives, allowing an attacker to
efficiently probe the address space without causing any visible
crash.

In this paper, we classify different crash-resistant primitives
and show that this problem is much more prominent than
previously assumed. More specifically, we show that rather
than relying on labor-intensive source code inspection to find
a few “hidden” application-specific primitives, an attacker can
find such primitives semi-automatically, on many classes of real-
world programs, at the binary level. To support our claims,
we develop methods to locate such primitives in real-world
binaries. We successfully identified 29 new potential primitives
and constructed proof-of-concept exploits for four of them.

I. INTRODUCTION

While arguably a weak defense by itself [42], address space

layout randomization (ASLR) plays a pivotal role in almost all

modern defenses that hide sensitive information at a random

location in memory. ASLR can be categorized as a basic form

of information hiding, namely randomizing the location of

code images, heaps and stacks in the address space. However

advanced defenses increasingly rely on the information hiding

primitives provided by ASLR to (pseudo-)protect sensitive data

such as encryption keys [31], code pointers [17], [28], and

redirection tables [9]. If implemented properly, even attackers

with full read-write access over the process’ memory will not

be able to access the sensitive data, because they are tucked

away at random memory locations in a huge address space.

Since the process memory will not contain a single pointer

to the hidden region(s), the only way for an adversary to get

to the secrets is by trial-and-error. It is almost certain that

such attempts will quickly access unmapped memory, which

normally incurs a crash. Hence, the sensitive information is

believed to be safe from attackers [31].

State-of-the-art attacks on information hiding try to reduce

the entropy of the randomization as much as possible. For

instance, they trick the program into increasing the size of

the hidden region [24], or into performing gigantic memory

allocations [35], or into leaking information via sophisticated

timing side channels [21]. However, unless the attackers

reduce the entropy to zero, the final step in these attacks

on randomization still relies on trial and error, with a high

likelihood of crashes.

Today’s successful attacks against the residual entropy build

on the observation that various server applications automatically

restart upon a crash, enabling an attacker to repeatedly probe the

address space in a brute-force manner [13]. Hence, recent work

proposed a variety of improvements to mitigate the attacks [30].

In this paper, we assume that information hiding is perfect, all

of the proposed improvements against disclosure attacks are

in place, the attacker cannot completely drop all entropy, and

the only way to find sensitive information is by performing a

crashless brute-force attack. As a result, an attacker needs to

find novel crashless ways to bypass such sophisticated defenses.

If the target application has code fragments that do not crash

when reading from or writing to inaccessible memory (because

they handle such violations themselves, say, in an exception

handler), attackers may use these fragments to probe for the

secret information repeatedly. This technique was introduced

by Gawlik et al. [22]. We define crash-resistant code as code

that will not crash the program upon an invalid memory access.

It is markedly different from crash-tolerant code where a server

application immediately re-forks worker processes or a web

browser re-opens a tab after a crash happened. While crash

tolerance can serve as a vector for attacks, it is much noisier

and thus less attractive than crash resistance—thousands of

crashes in a short amount of time may easily raise alarms in

real-world scenarios. In contrast, crash resistance incurs no

crashes at all and is therefore much stealthier.

Note that crash resistance in its intended form is a classic

double-edged sword. On the one hand, it enhances software

reliability and enables applications to automatically recover

from malformed inputs that cause an access violation, also

improving user experience. On the other hand, it permits attack-

ers to abuse the crash-resistant code snippets, dubbed memory
oracles, to probe the address space [22] and even entropy-

reducing attacks have used such crash-resistant probes [24].

Note that the underlying principles of each memory oracle
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can vary greatly. They can range from system level exception

handlers, over system calls to application specific exception

handling.

Unfortunately for attackers, finding crash-resistant primitives

in real-world software is labor-intensive, manual work. Given

a new application, finding such a specific primitive is difficult

and rare, especially in the absence of source code. Thus, in its

original form, the approach was difficult to use in a generic

way across many applications. Furthermore, the concept was

thought to be only applicable to client applications.

In this paper, we present semi-automated methods to locate

crash-resistant primitives in a given binary executable and gen-

eralize the basic concept of crash resistance by demonstrating

that the method is also applicable to server applications. Based

on our observation of the root cause for the crash-resistant

primitives, we developed two different strategies on how to

locate further instances of them in binary executables. Both

serve as a starting point for fully automated identification of

such primitives and we demonstrate that our methods can

find them quickly in a number of real-world server and client

applications on different platforms. While our techniques do

not produce fully-fledged memory oracles in an automated

way, we substantially reduce the engineering work required to

analyze a given binary executable. More specifically, we are

able to identify in an automated way code constructs that can

serve as crash-resistant primitives.

The first approach targets the interface between a user-

mode program and the kernel, such as system calls on Linux

or API calls on Windows. This builds on the intuition that

many such calls allow the kernel to respond to an invalid

user address given as a parameter by returning an error code

(without crashing) to user space. We leverage taint analysis

to track which bytes in attacker-controlled memory eventually

determine the appropriate parameters in calls that fit crash

resistance (e.g., system calls that return -EFAULT on access

faults). Intuitively, by modifying these memory locations, the

attacker may probe the address space—assuming that the

program does not also dereference the address outside the crash-

resistant code fragment. We explore this idea for both server

applications on Linux and client applications on Windows to

study if this approach is feasible in practice.

The second approach targets exception handling code, since

this is a common technique to guard program code and respond

to error conditions—hence a prime candidate for crash-resistant

code. We look for code structures that paper over access

violations, thus yielding candidates for crash-resistant code

which we subsequently vet. In a first step, we extract the

exception handlers from a binary and then use symbolic

execution to determine which ones handle access violations.

Given that exception handling is commonly used for client

applications on Windows [22], we focus our analysis on such

programs.

Using these two methods we successfully found 29 new

crash-resistant primitives in popular server applications and

web browsers. We also developed four primitives found in

Nginx 1.9, Lighttpd 1.4, Internet Explorer 11 and Firefox 46

into proof-of-concept exploits to demonstrate the effectiveness

of our approach.

In summary, we make the following four contributions:

• We classify known crash-resistant primitives based on

their underlying mechanisms and use these properties as

a way to identify additional instances of memory oracles.

• We show that it is possible to discover (otherwise

extremely hard-to-find) crash-resistant code primitives

in an automated fashion in both client applications on

Windows and servers on Linux.

• We are the first to find and use crash-resistant code

primitives on server applications. In contrast to crash-

tolerant approaches, which simply exploit the fact that

server applications typically restart upon a crash, our

technique offers much more flexibility and stealthiness

for an adversary.

• We evaluated our techniques on five popular servers and

two browser applications and found 29 new crash-resistant

primitives, of which we developed four into fully fledged

proof-of-concepts. In addition, we discuss how attackers

can exploit these primitives to bypass any defense utilizing

information hiding.

II. BACKGROUND AND RELATED WORK

In the following, we provide a brief overview of the technical

concepts we use in the rest of this paper to classify crash-

resistant primitives and detect them in an automated way.

A. Crash-resistant Primitives

Several papers [13], [21], [41] have shown that server

applications are vulnerable to guessing attacks against defenses

based on randomization due to their crash-tolerant nature, i.e.,

a network service typically restarts in an automated way upon

a crash. This enables an attacker to perform brute-force attacks

and eventually reach her goal. On the downside, the induced

crashes are noisy and a defender might easily notice a server

application crashing thousands of times in a small amount of

time. Such attacks relying on crash-tolerant code were believed

to not affect client applications given their hard crash policy:

client programs usually do not restart after a crash and thus an

attacker is limited to a single try to bypass a given defense.

A new twist on crashes was proposed by Gawlik et al. [22],

who demonstrated that so called memory oracles can be

leveraged to probe arbitrary memory regions and discover

reference-less memory. The authors showed two examples of

such primitives: one usable in Internet Explorer which abuses a

system feature, and one in the 64bit version of Firefox which is

based on a program specific performance optimization involving

exception handlers. Furthermore the authors noted that some

system calls, like access, might be usable as memory oracles.

In this paper we build on these findings to define categories

of memory oracles and develop tools that aid in the search for

similar primitives.
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B. Information Hiding Defenses

Software-based fault isolation (SFI [20], [45]) is a technique

that allows code to be executed with strong safety and

security guarantees by adding checks to critical operations

such as memory accesses or control flow transfers. Similarly,

techniques like SoftBound [34] or baggy bounds checking [7]

enable memory safety, preventing many attack vectors in a

generic way. Unfortunately, the overhead induced by such

approaches is prohibitively high in practice [43], which prevents

a widespread adoption. As a more efficient alternative, several

recent defenses [9], [17], [28], [31] rely on information hiding

to prohibit an attacker from obtaining valuable information

such as encryption keys, code pointers, and redirection tables.

However, any defense based on information hiding is at risk

in the presence of crash resistance. Most prominently, address

space layout randomization (ASLR) can be bypassed as it

is possible to either locate the memory location of a library

directly or instead locate otherwise reference-less structures

that contain pointers to loaded binary images. For example,

on Windows this is the case for thread information blocks

(TEBs) and process environments blocks (PEBs), two data

structures which allow an attacker to retrieve the location

of all loaded modules. In practice, however, information

leaks providing the location of code images are common. In

contrast, inferring addresses of data structures belonging to

stronger defenses beyond ASLR is not commonly possible.

Such advanced defenses typically assume an attacker equipped

with an information leak—and thus full knowledge of the

memory layout of the process—with the exception of the

meta data structures of the defense in question. Commonly,

this is implemented by only keeping the addresses to these

structures in a register and preventing any write of this value to

memory. Without knowledge of the exact location, an attacker

can thus not overwrite the data and the defense can enforce

certain properties on the protected program. Examples of such

advanced defenses are Code-Pointer Integrity (CPI) [28] and

any Control Flow Integrity (CFI) solution relying on a shadow

stack [14], [17] to protect backwards edges. Armed with crash

resistance, an attacker can locate the hidden region of CPI (both

the sparse region and the hash-table based implementation [22])

and modify the metadata of any pointer. This means that the

main assumption of CPI, namely that the pointer metadata

of any code pointer cannot be modified by an attacker and

thus any use of crafted pointers is prevented, no longer holds

true. A similar attack is possible for shadow stack-based CFI

solutions. These solutions hide the location of the shadow stack

from the attacker by using, for example, a dedicated register

or thread local storage. If an attacker can find the stack via

crash-resistant probing, she can modify the information stored

there.

The same holds true for implementations that instead of using

a dedicated shadow stack rely on separating safe and unsafe

stacks. The SafeStack [28] implementation by CPI, which is

now included in LLVM, provides such a feature and uses the

native stack only for statically proven safe variables. This means

an attacker cannot overflow a local stack variable to overwrite

return addresses. Additionally, the compiler ensures that no

references to the SafeStack are written to memory outside

of the SafeStack itself, resulting in a reference-less memory

region. As return addresses are located on the SafeStack, a

control-flow hijack based on overwriting return addresses is no

longer applicable, without being able to pivot the stack pointer.

However, as crash resistance allows scanning the whole address

space, the stack can be located [24] and the return addresses

overwritten.

Another recent defense that aims to protect against mean-

ingful control flow hijacks is ASLR-Guard [31]. The main

concept is that an attacker is rendered unable to retrieve a

plain text code pointer, so any control flow hijack attack is

reduced to pure chance. This is achieved by (i) removing links

between data pointers and code pointers and (ii) encoding any

code pointers stored to data memory. The first countermeasure

ensures that a data pointer leak (which is explicitly allowed

within the threat model) gives no indication of the location of

executable code. With the common form of ASLR the address

of the data section, which can be located by the attacker, allows

inferring the location of executable code of the same module

by simply adding a static offset. The first countermeasure is

combined with a pointer protection scheme that never writes

plain text code pointers to data locations. This includes most

prominently the stack, which can be located and leaked by

an adversary. However, using a crash-resistant primitive, it is

possible to just probe memory until the executable code is

found. An attacker does not need to infer the location from

either data pointers or saved code pointers: after the executable

code has been located, known attacks like JIT-ROP [42] can

be used again.

Apart from models that merely restrict an attacker’s knowl-

edge of the memory layout, some defenses impose additional

properties on the memory. The principle of execute-only

memory (XoM) [8], [23] allows for an additional access right,

in contrast to the standard of execute access implying read

access. Without the possibility of reading the code, an adversary

has no way of determining the actual bytes used to implement

a given functionality. If this technique is combined with some

form of fine-grained ASLR, it prevents code-reuse attacks

requiring knowledge about the exact code either statically,

e.g. ROP [38], or at run time, e.g. JIT-ROP. Against these

defenses, memory oracles are less useful as probing primitives

are mainly utilized to locate memory, whereas XoM does not

use any information hiding in this regard. As such, when using

plain probing attempts, the result of trying to read code would

still indicate inaccessible or unmapped memory. However,

with crash-resistant primitives that allow broad capture of

any exception, it could be possible to brute-force the code

layout. A similar attack might be possible against sophisticated

defense solutions such as Readactor [15] and Readactor++ [16],

which focus on both hiding code pointers from an attacker and

enforcing XoM.

An important type of defense that can hamper the success

of memory probing is runtime re-randomization [9], [12].
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Employing runtime re-randomization can substantially decrease

the success probability of either the scanning itself or the

following attack step. Due to the “moving target”, it is harder

for an attacker to locate the code she needs and at the same

time abuse it within the time constraints given by the defense.

However, crash-resistant primitives that allow invalid executions

to be recovered can also weaken the security guarantees of

these defenses: given enough tries, such schemes can likely be

bypassed due to the chance of using the right randomization

in the attack attempt.

C. Threat Model

In the following section, we introduce several techniques to

detect crash-resistant code within a given binary executable.

Several conditions must hold for these code snippets to be

useful for an attacker. To this end, we assume the following

threat model in the rest of this paper, which is realistic and

matches the capabilities of a real-world attacker. Further, it

is consistent with recent research [15], [16], [18], [33], [40],

[42]:

• Arbitrary read/write primitive: The attacker can read

from and write to arbitrary memory locations.

• Information leak: An information leak allows the adver-

sary to infer the location of data protected via some kind

of randomization scheme such as ASLR. For example, the

adversary can locate the base address of module locations,

but she cannot access reference-less memory locations.

• Computational capabilities: The attacker can perform

computations during the attack. This can be some form

of scripting environment on the client side or a server ac-

cepting multiple connections. The latter allows an attacker

to query the state of the server with one connection and

act on this information with another one.

• Writable ⊕ Executable memory: Memory pages are

marked as either executable or writable, but not both at

the same time.

• State-of-the-art defenses: The target application employs

some kind of state-of-the-art defense to thwart code-reuse

attacks. This can be either an information hiding scheme

such as a shadow stack-based CFI approach, or some kind

of defense to prevent control-flow hijacking attacks such

as CPI.

• Hard crash policy: The application does not automat-

ically restart after a crash. This includes automatically

restarting a crashed worker process or a user opening a

website again.

III. HIGH-LEVEL OVERVIEW

In code-reuse attacks, the exploitation procedure of memory

corruption vulnerabilities can be subdivided into three phases.

Initially, the attacker leverages a memory corruption vulner-

ability to establish a read/write primitive. Depending on the

kind of vulnerability, an attacker may be able to read some

out-of-bounds bytes in order to disclose some information

about the address space layout, or leverage some other kind of

information leak. In the second phase, the attacker prepares the

payload, for instance, by relocating a static ROP chain [38], the

counterfeit objects of the COOP attack [40], or by compiling

a JIT-ROP chain [42]. Meanwhile, it may be necessary for

the attacker to also bypass code-reuse defenses such as fine-

grained randomization [11], [26], [46], shadow stack-based CFI

solutions [14], [17], CPI [28], and other information hiding-

based approaches [9], [18], [31]. Finally, the attacker hijacks

the control flow by overwriting code pointers or other sensitive

pointers. In practice, it may be necessary to carry out (parts of)

the sequence multiple times in order to bypass multi-process

sandboxing schemes or to escalate the privileges of the user.

We assume that a defense relying on information hiding, for

example one of those discussed in Section II-B, is employed

by the target application. Thus an attacker needs to leverage a

crash-resistant primitive in the second attack phase with the

help of the following steps (Figure 1):

1) Overwrite a value in memory: the attacker uses a memory

corruption primitive to prepare the memory for the next

step, usually overwriting pointers to data which are then

probed later; modifying data can cause usually benign

functions to exhibit unintended/malicious behavior.

2) Trigger execution of probing: the attacker forces the

program to execute the probing primitive. This is trivial via

a control-flow hijacking attack, but we focus on locating

primitives legitimately accessible to the attacker, e.g.,

functions in a scripting environment.

3) Infer the state of the probed location: finally, the attacker

requires an indication whether or not the probing attempt

succeeded. In the easiest case, this is directly inferred

from a return value or similar information, but usually

the attacker needs to infer the state indirectly, e.g., via

memory changes or execution timings.

These steps can be repeated several times to probe other

memory locations until enough information about the memory

layout is known to the attacker.

In the remainder of this section, we describe our classifica-

tion of crash-resistant primitives and outline how we locate

additional candidates in a (semi-)automated way for each type.

Note that we do not cover functionality intended for querying

the memory layout of a process, such as the /proc file system

under Linux or functions like VirtualQuery or IsBadReadPtr

on Windows.

step 1: 
change pointer in memory

A

recv (fd, A, ...)
step 2: 

make program use the pointer
in crash tolerant function

step 3: 
check for success of
the probe operation

(returns EFAULT if address not valid)

Figure 1: Attacker’s procedure to probe memory without crashing
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A. Syscalls and OS API Functions

Modern operating systems allow for the quasi-parallel

execution of different, isolated user space processes. This also

means that a fault in a single program must not cause another

independent program or the whole system to fail. This is

achieved by handling errors, e.g., invalid memory accesses, on

a per-program basis. However, once a program needs to pass

data to the operating system, any error in this data (or often in

the case of a memory error, in the location of this data) can

potentially impede the stability of the whole system. As such,

whenever data is passed from user space to kernel space, the

OS must perform strict error checking.

To allow an application to react to an error in its data,

a failure state is usually returned. If this event is properly

handled, the application can resume execution. However, in

the case of a scanning attempt, this property can leak valuable

information to the attacker. If she is able to influence the data

in a way that causes a failure state to be reported for invalid

addresses and success for valid ones, she is able to probe the

address space and uncover hidden memory regions. The actual

implementation of such a primitive is heavily OS dependent,

however it is applicable to any program allowing manipulation

of input data and inferring the error state afterwards.

On Windows systems, the OS exposes a set of system

API functions which are then translated to system calls

after preprocessing in user space. The result is an often

heavily abstracted interface to the underlying syscalls. This is

problematic in the context of memory probing, because any

access to the supplied memory region can lead to a fault in

user space, preventing the OS from gracefully reporting the

error state to the program. In contrast to this, programs running

on Linux are free to access syscalls directly or with minimal

abstraction. While both system operate on a similar principle—

a specified interface is provided for the user programs—we had

to account for the differences and chose to develop different

techniques for the Windows system API and Linux syscalls.

1) Linux syscall interface: The Linux kernel exposes a set

of well documented syscalls to the user space. These are used

to perform kernel-level functionalities from user space, such as

file- or network-related operations, and memory management.

In case an error occurs during a syscall, the kernel returns -1

to the user process to indicate that something went wrong and

assigns the appropriate error code to the errno variable in user

space.

Several syscalls require the application to provide pointers to

memory in user space such that the kernel can read data from or

write data to that area. In case the address is invalid, the kernel

sets the errno variable to EFAULT [5], which indicates that

the memory location is not accessible. EFAULT is a common

error code that many popular system calls use. Examples

include connect, read, write, epoll_wait, recvfrom, open,

and many others. If an attacker has control over the memory

address of the relevant syscall parameter, she can potentially

probe the address space for accessible memory areas without

crashing the application.
For instance, many servers contain a main loop like this:

1 while (true) { // server loop
2 ...
3 if (read (fd , buf , MAX_BUF_LEN) < 0) {
4 terminate_connection(fd , "read failed");
5 continue;
6 }
7 ...
8 }

Listing 1: Server loop with error handling

An attacker who is able to control the buf pointer can provide

any address and discover whether or not it is valid. Note that

the server will not crash.

The detection of crash-resistant candidates can be automated

as follows. Because of their relevance for crash-resistant

probing candidates, we maintain a list of all syscalls that

may return EFAULT and monitor their occurrence during an

instrumented, automated execution. We use taint analysis to

identify which parameters can be influenced by an attacker

and execute unit tests to analyze which syscalls can potentially

be executed during a run of the application. As a result, we

obtain a list of potential candidates.

2) Windows API: In contrast to Linux, user-mode

applications on Windows exclusively utilize the API

provided by the operating system [39]. As a result, Windows

never exposes the system calls directly to the application.

Nevertheless, the same method outlined above can be applied:

if an API function accepts a pointer as an argument and an

attacker can control this pointer, she can point it to arbitrary

memory addresses and observe the return value or side effects

to infer the resulting state. An example for this concept is the

API function VirtualQuery, it is used to obtain information

on the state of a memory address. If an attacker is able to

control the argument ptr and knows the location of mem info,

she can probe any page for its state and permissions:

1 void* ptr = NULL;
2 PMEMORY_BASIC_INFORMATION mem_info = malloc(sizeof(

MEMORY_BASIC_INFORMATION));
3 ...
4 VirtualQuery(ptr , mem_info , sizeof(

MEMORY_BASIC_INFORMATION));
5 ...

Listing 2: Example for VirtualQuery API call on Windows

While VirtualQuery is trivially able to serve as a memory

oracle, the functions targeted by our framework do not

explicitly state their crash-resistant nature in the documentation.

Therefore we need to locate them ourselves using the following

steps. First, we reduce the set of all available Windows API

functions to only those functions with crash-resistant properties.

For this we apply a basic form of fuzzing to the Windows

API functions. In the second step, we attempt to find code

paths to these crash-resistant API functions by harvesting API

calls, tracing instructions, and filtering the results via custom

analysis scripts. Third, we classify the pointer arguments of the

crash-resistant API functions to figure out if we can actually

control the pointer on the execution path: only if an attacker-

controllable pointer is found, we can construct a corresponding

crash-resistant primitive.
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B. Exception Handlers

Another feature of common operating systems and pro-

gramming languages is allowing a program to recover from

an exception. These exceptions can range from a software

generated exception to hardware faults. For our purposes, the

possibility of handling an invalid memory access and resuming

execution afterwards is especially critical. Low-level languages

like C/C++ allow a programmer to explicitly add constructs

to catch faults and tell the operating system how to resolve

them. Essentially the operating system or language runtime

provides information about the fault to a specific subroutine

in the program which then can choose from a set of options.

Commonly these options include simply ignoring the ex-

ception, executing the next instruction as if nothing happened,

resuming execution at a different location instead, or passing

the exception along to another handler. In the latter case, if

the exception is not handled by the program, the OS will

usually terminate the program. A crash-resistant primitive using

exception handling requires the program to dereference an

attacker controlled pointer inside a code block that is covered

by an exception handler. After a probing attempt, the result

must be visible to the attacker, either explicitly by a return value

or similar values, or implicitly with the help of side channels

(e.g., timing). In addition, the exception handler must allow

memory faults to be handled, which can be excluded using the

information provided for each fault to filter out unsupported

exceptions.

Under Linux, exception handling is implemented as signal

handling. A signal is a software interrupt that can be handled

by a process in three ways: (i) it can be ignored, (ii) it can be

caught by a signal handler, or (iii) the signal’s default action

can be performed [6]. For example, the default action of the

signal SIGSEGV (i.e., segmentation fault or access violation) is

the termination of the process.

In contrast, Windows utilizes two techniques for exception

handling, Structured Exception Handling (SEH) [36], [39]

and its extension Vectored Exception Handling (VEH) [37].

While SEH-based exception handlers operate locally on a

guarded function, VEH-based exception handlers can be

used globally within the process. The following example

shows a SEH-guarded block with its corresponding fil-
ter:

1 __try {
2 ...
3 // guarded code
4 value = *ptr;
5 ...
6 }
7 __except(EXCEPTION_EXECUTE_HANDLER)
8 {
9 value = -1;

10 }

Listing 3: Example for Structured Exception Handling (SEH)
with corresponding filter on Windows

This exception handler could be used to probe memory

addresses, if an attacker controls the value of ptr. In the case of

any exception, including access violations, value would be set

to -1; if the location is readable, it would be set to the content

of that address. Specifying EXCEPTION EXECUTE HANDLER as

the filter expression allows the handler to be executed for all

types of exceptions.

Any exception leads to the evaluation of the corresponding

filter expression which determines the appropriate action. The

filter can (i) simply resume the program execution (i.e., ignore

the exception completely), (ii) transfer the control flow to

the exception handler, or (iii) forward the exception to the

next handler. The filters are implemented as separate functions

on the binary level and referenced in SEH structures. If an

exception is not handled and it is considered fatal by the

operating system, it causes program termination. This is also

the case for access violations generated by scanning attempts.

If an attacker can control dereferences inside of a guarded

code block and the corresponding filter allows either handling

or ignoring of access violations, she is able to scan arbitrary

memory.

To automatically locate potential memory oracles, we first

need to collect all available exception handlers and their

guarded code regions. This is done via static analysis of the

target binary. We then discard any exception handlers which

are not able to handle access violations as indicated by their

filters. For this we symbolically execute the filter functions.

The resulting set of potential code locations is then analyzed

with the tools described in the previous section: instead of

system APIs, we now target the guarded code locations.

C. Swallowed exceptions

On further investigation we also added a third class of

possible memory oracles which was not covered before. There

are circumstances where exceptions are silently ignored. Here

we do not consider cases where an exception handler of a

program simply ignores the fault and continues execution or

a system API detects an error and the user program does

not check the error status. While leading to the same result,

suppressing of memory faults, these methods deliver the error

status to the user program, it just does not act on them. Instead

swallowed exceptions give no feedback to the user program

that an exception occurred. An example are user-kernel-user

callbacks [10], where the exception handling mechanism can

not support the context switches. The result is that the calling

program has no way of detecting that an exception occurred.

We do not consider this class of crash-resistant primitives in

our analysis.

IV. IMPLEMENTATION

In the following, we briefly outline the implementation of

our framework and describe the reasons for our design choices.

Implementation details are available in the corresponding

technical report [27].

A. Syscalls on Linux

On Linux, we use dynamic taint tracking to isolate viable

candidates. We target common server applications with test

cases, allowing for sufficient code coverage. As we reuse test
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cases and want to support additional applications with minor

changes, we chose a minimally invasive approach. The server

program is instrumented with libdft [25]—a data flow tracking

library which we extended with byte granular taint tracking—

and the corresponding client program is controlled by our

monitor application. The monitor can send client and server

custom commands to control the taint state and invalidate

pointer arguments. After a test run we obtain a list of potential

crash-resistant primitives with details on which arguments were

valid or invalid during the test run. This list is then verified

manually to eliminate false positives.

B. Windows API Functions

As the Windows API does not define error states as uniformly

as the Linux syscall interface, we need to isolate appropriate

target functions ourselves. For this we use a fuzzing approach to

gather a list of functions that handle invalid pointer arguments

gracefully. Afterwards we locate any usage of these functions

in the targeted applications. For this we use the dynamic

instrumentation framework DynamoRIO [19]. The resulting

list of call sites is then reduced using heuristics to only retain

promising candidates. At the end of this analysis phase, the

results need to be manually verified to exclude any false

positives, mainly those cases in which the pointer arguments

are either short lived stack variables or volatile heap locations,

and thus cannot be controlled by the attacker.

C. Exception Handlers

Aside from the system level candidates, we also target

application-specific memory oracles in the form of exception

handlers. For this we use the fact that under 64bit Windows

every function in an application needs to provide stack unrolling

information in case it is contained in the call stack of an

exception. As such, we can parse the corresponding .pdata

section and retrieve the list of all exception handlers in an

executable module. We then use symbolic execution and the

SMT solver Z3 [32] to filter out the exception filters that allow

either all exceptions or at least access violations to be handled.

After this analysis step, we reuse the analysis methods we

developed for the tracking of API functions and target the

code covered in the exception handlers. At the end, we again

manually verify the results.

V. EVALUATION RESULTS

Based on our prototype implementation, we now discuss the

results of our analysis on binary executables for both Linux

and Windows.

A. Syscalls on Linux

We evaluated our framework with widely used server

applications on Linux. In particular, using our framework, we

ran the standard test suites for the following server programs:

Nginx 1.9, Cherokee 1.2, Lighttpd 1.4, and Memcached 1.4.

We focus on such popular server programs since they all handle

multiple connections per process. An attacker can simply use

one connection to probe a memory address (using a discovered

Table I: Syscalls indicated as potential (±) or valid (+) cr primitives
by our framework on Linux. Green circled ones were manually verified
to be usable as a cr primitive. The red non-circled plus sign indicates
a result manually verified to be a false positive.

Syscalls
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chmod ±
connect ±
epoll wait + ± + ±
mkdir ± ±
open ±
read ± ± + ±
recv + ±
recvfrom ±
send ±
sendmsg ±
statfs ±
symlink ±
unlink ± ±
write ± ± ±

crash-resistant primitive) and another connection to exercise

her arbitrary read/write primitives and modify the state of the

probing connection.

For completeness, we also consider server programs that

handle every new connection in an independent worker process,

focusing our analysis on PostgreSQL 9.0. In such cases, the

attacker can only use a single connection to probe and modify

the state of the program. While exploitation is generally

more complicated (it might be harder to restore the preferred

connection state to probe a new memory address), we still found

usable primitives in practice. Note that our goal is simply for the

worker process not to crash and a graceful process termination

is sufficient for our purposes. As the worker process is expected

to terminate after serving a request, this does not constitute

any abnormal action.

Table I shows all the candidates reported by the framework.

As depicted by the non-circled plus-minus sign, many of the

candidates end up in a segmentation fault if we automatically

alter the target memory locations with an invalid memory

address. We have confirmed our framework has flagged all

these cases correctly using manual inspection. Despite the

many invalid candidates, our framework discovered a usable

crash-resistant primitive, depicted with a green circled plus

sign, in all of our server programs (with the two potential
candidates confirmed via manual verification).

Four candidates in total were indicated as valid candidates by

the framework. We confirmed that our framework has flagged

all these cases correctly using manual inspection, except the

valid candidate on Memcached which turned out to be a false

positive (depicted as a red non-circled plus sign). Manual

inspection revealed that the connection handling thread exits

after the candidate syscall epoll wait returns an error code,

while the server keeps running—which our framework currently

interprets as correct behavior. Subsequent connections, however,
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never get processed by the now terminated connection handling

thread and the primitive is effectively unusable for multiple

probing attempts. This false positive can be simply eliminated

by checking the status of connection handling threads, a strategy

which our current prototype does not yet support in a generic

way. From our analysis, we found usable candidates in recv in

Nginx, epoll wait in Cherokee and PostgreSQL, and read in

Lighttpd and Memcached. We exemplify how such candidates

can be used as crash-resistant primitives in Section VI.

B. Windows API Functions

We had to first collect crash-resistant API functions on

Windows. We extracted 20,672 API functions from the MSDN

library, of which 11,521 (55.7%) contained at least one pointer

argument. Hence, only these functions served as inputs for the

analysis phase via our custom API fuzzer. As a result, we found

400 API functions that are candidates for a crash-resistance

primitive both under Windows 7 and 10.

In the next step, we attempted to locate these functions

on execution paths, outlined here exemplary for Internet

Explorer 11 (64bit) on Windows 10. For this, we logged all

calls to target API functions while visiting the top 500 websites

from alexa.com [1]. In addition, we ran browser and JavaScript

benchmarks [2], [44] to increase the code coverage. Only 25

crash-resistant API functions were found on an execution path.

Finally, we used our analysis scripts to determine if these

functions were triggered from a JavaScript context. We found

12 functions with this characteristic.

To be a usable crash-resistant primitive, we have to trigger

them from JavaScript and control their arguments; in addition,

we must be able to intercept the return value. To analyze these

two properties, we created instruction traces and analyzed the

resulting execution paths. Unfortunately, all candidates had to

be excluded after a manual analysis since all of the pointer

arguments were unusable for our purposes. The reasons for

this are threefold. First, most functions were query functions

(e.g., GetPwrCapabilities) which are usually called by

supplying a stack-allocated structure. If such a pointer is invalid,

then the stack pointer is corrupted. This leads to an illegal

memory access and causes the program’s termination. Second,

a majority of the remaining candidates’ pointer arguments were

dereferenced outside of the target function. This also leads to

an illegal memory access if the pointer is invalid. Third, we

cannot control the pointer arguments of some candidates since

the pointers were volatile heap pointers which had no previous

references stored in memory.

This negative result for Windows API functions does not

imply that no crash-resistant primitive can be constructed using

our method. The coverage of test cases influences the number

of excluded functions after code path analysis: only 25 of the

400 candidate API functions were observed on execution paths.

Further work on improving code coverage may lead to more

candidates, and hence yield crash-resistant primitives.

Table II: The number of unique code locations that are guarded by
C-specific handlers during an Internet Explorer 11 run. The code
locations that appear on the execution path are from the set after
symbolic execution (SB).

DLL # guarded program code

before SB after SB execution path

user32 70 63 40
kernel32 76 66 14
mshtml 129 10 3
ieframe 34 22 6
kernelbase 96 81 0
ntdll 113 65 19
jscript9 22 6 4
rpcrt4 62 20 6
sechost 133 11 0
ws2 32 82 29 10
xmllite 10 2 1

Table III: Unique exception filters in different DLLs before and after
symbolic execution (SB).

DLL # filter functions

before SB after SB

x64 x32 x64 x32

user32 9 17 2 15
kernel32 60 7 50 3
mshtml 128 33 9 2
ieframe 29 6 17 0
kernelbase 54 21 39 19
ntdll 71 25 23 15
jscript9 19 5 3 4
rpcrt4 50 11 8 1
sechost 126 26 4 1
ws2 32 55 25 3 17
xmllite 10 0 2 0

C. Exception Handlers

To test the feasibility of our approach leveraging excep-

tion handlers, we collected the executed code blocks during

normal usage. Again we use Internet Explorer 11 (64bit) on

Windows 10 as an example. We instrumented the browser with

DynamoRIO and browsed again the top 500 websites from

alexa.com [1]. Then, we analyzed all DLLs that have been

loaded by the browser and extracted the exception handlers.

Afterwards, we reduced this set by symbolically executing

the corresponding filters and cross-referencing the remaining

exception handlers with those that have been visited.

Table II provides an overview of the amount of program

code that is guarded with C-specific exception handlers for a

subset of the loaded DLLs. In addition, the table shows the

code locations that are guarded with crash-resistant candidates

(including the exception handlers that use catch-all filters) as

well as their number of occurrences on the execution path.

For instance, there are 63 crash-resistant candidates from 70

exception handlers in user32.dll, whereby 40 code locations

that are guarded by those are executed while browsing the

most popular websites. Contrary, sechost.dll guards 133

code locations, whereby 11 crash-resistant candidates exist and

no guarded code location was triggered during our test. In
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addition, Table III shows that symbolic execution significantly

reduces the set of exception filters, since it drops the majority

of filter functions given that they are not fit for our purposes.

As described before, we use symbolic execution to exclude all

filters that do not allow access violations to be handled. For

example, only 4 of 126 filter functions remain in sechost.dll,

while 9 of 129 are left in mshtml.dll. In total, we found

6,745 C-specific exception handlers in 187 analyzed DLLs.

These exception filters use 5,751 different filter functions. After

the symbolic execution, 808 filters remain that handle access

violations, including catch-all filters. These filter functions are

used by 1,797 exception handlers.

In the next step, we cross-referenced the visited code blocks

with those filtered exceptions. These exception handlers may

lead to crash-resistant primitives that are known to be triggered.

In absolute numbers, these guarded code parts have been

triggered 736,512 times during our test, whereby 385 different

code parts have been visited. To sum up, this analysis step

reduced the target set from 6,745 to 385 C-specific handlers.

To further reduce the candidate set, we used our debugger

script to only select functions that are triggered via JavaScript.

For this we assumed that any function which has a reference

to part of the JavaScript engine in its call stack is valid. The

survivors after this step were then manually verified.

While we focused our code path analysis on Firefox and

Internet Explorer, the results of the previous analysis steps can

be reused for any application. This means the static analysis of

the system DLLs can be performed once and then be applied

to any target program.

VI. PROOF-OF-CONCEPT EXPLOITS

To demonstrate the practical applicability of our automati-

cally discovered crash-resistant primitives, we developed four

proof-of-concept exploits that we discuss next. Note that we

focussed on locating the memory oracle itself, so we assumed a

memory read/write primitive to be present. During our tests we

emulated such a vulnerability by modifying the target binary.

A. Internet Explorer 11

Our proof-of-concept exploit for Internet Explorer 11 relies

on the function MUTX::Enter contained in jscript9.dll. It

contains a call to EnterCriticalSection that is encapsulated

in a try-catch block. The exception filter address field within

the scope table contains 0x1, which indicates that regardless of

the exception code, all exceptions are caught and the execution

resumes at the exception handler. The CRITICAL SECTION

structure passed to EnterCriticalSection lies within the

ScriptEngine object at a fixed offset. The ScriptEngine

object also contains a status field that indicates whether

the last call to EnterCriticalSection failed. This status

field is cleared before the call and set in the exception

handler. The CRITICAL SECTION structure contains a pointer

to a debug info structure. Under certain circumstances,

EnterCriticalSection reads the field at offset 0x10 from

that debug info structure. By setting three additional fields

of the CRITICAL SECTION structure to certain values, we can

force the correct circumstances. An attacker can overwrite

the pointer to debug info with x− 0x10 to probe address x.

MUTX::Enter is called by Internet Explorer’s JavaScript engine

once it processes new JavaScript code and thus, can easily be

triggered by adding a new script tag to the DOM.

B. Firefox 46

As another example, we chose Firefox 46.0.1 64bit on

Windows 10. As the general approach for both proof-of-concept

exploits is similar, we only highlight the key differences. In

contrast to Internet Explorer, where the exception handler

was located in the application itself, namely jscript9.dll,

the memory oracle in Firefox is due to an exception handler

in ntdll.dll. While all applications import this library, the

corresponding primitive was only on the execution path when

using Firefox. Another difference is that the exception handler

is not flagged as catch-all, instead it excludes certain exception

types, but as it handles access violations it is usable for our

purposes. Due to the way the memory oracle is used within

the process, it does not require a manual trigger, instead a

background thread continuously calls the vulnerable function.

This means we only need to write the address to probe to the

appropriate object and read back the result after giving the

parallel thread a chance to probe.

C. Nginx 1.9

On Nginx, our framework found that the crash-resistant

primitive associated to the recv syscall becomes available

after the server receives a partial request. In detail, the server

allocates a Nginx-specific ngx buf t struct object for a

connection once some request data comes in (only deallocated

later, when request processing completes). In our proof-of-

concept exploit, we use parallel connections to implement

the individual memory probes. We first send a recognizable

signature via a partial request over an independent connection,

so that the server allocates the buffer and saves the signature

therein. While the first connection is waiting for the request

to complete, i.e. for a double newline marking the end of the

request, we use a second parallel connection to leak the buffer

object containing our signature. Once we leak it, we perform

arbitrary writes to the buffer to reinitialize it, i.e., set all its

pointers to the memory address we are probing for. Finally,

we send more data to complete a full request over the first

connection. If the memory address overwritten in the buffer

was inaccessible, the server gracefully closes the connection

without sending back any response data. Otherwise, the server

sends the requested file back to the client over the connection.

D. Cherokee 1.2

On Cherokee, our framework found a crash-resistant prim-

itive associated to the epoll wait syscall. Unlike Nginx,

Cherokee’s default configuration starts multiple threads to

serve parallel incoming requests. Each idle thread calls the

epoll wait syscall in a loop, with a timeout of 1 second

between iterations. Corrupting a given thread’s epoll object

pointer with an inaccessible memory address will cause the
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thread to stop serving client requests and stall in a tight loop of

failing epoll wait invocations. This induces a performance

degradation attack on the Cherokee (lower capacity and higher

overhead), resulting in a timing side channel. In our proof-of-

concept exploit, we first leak the location of a given thread’s

cherokee fdpoll epoll t object and then corrupt it to

probe memory. For each probe, we overwrite the struct

epoll event pointer in the target object and measure the

time for the server to handle 1,000 requests. We noticed there

is significant time difference compared to the baseline when

even a single thread is non-functional. With all threads running

correctly (baseline), the server handles all the requests in 5.7

seconds, and when a single thread is non-functional, it does

so in 9.3 seconds (on average, with marginal variations across

runs). Based on the time difference, we can distinguish whether

the probed memory address is accessible (former case) or not

(latter case).

VII. DISCUSSION

In the following, we discuss limitations of our current

prototype implementations and reflect on the lessons learned.

We also explain the reasons for our disjoint approaches for

locating memory oracles on different operating systems.

A. Locating Primitives of Previous Work

To verify our tool chain, we searched for the known memory

oracles in both Internet Explorer and Firefox [22]. The primitive

in IE is based on an exception handler that is set to handle

all possible exceptions. As our tool looks for this kind of

exception handler, we were able to locate this candidate in an

automated way. After a security update, the handler handles

a set of exception classes configured by a system setting. To

detect this new version of the primitive, we had to manually

verify it due to the filter calling another function to allow

configuring the behavior.

The primitive in Firefox, on the other hand, was not located

automatically because this application uses a vectored exception

handler (VEH) that is registered during runtime. As we do

not cover this class of handlers in our current prototype

implementation, our framework can not locate this candidate.

Note that this is not a fundamental limitation of our approach.

Further work can support this class by locating all calls to

AddVectoredExceptionHandler and extracting the handler

address. In addition, the semantics for the symbolic execution

need to be modified to account for the different function

prototype.

Oikonomopoulos et al. [35] recently introduced a technique

that allows an adversary to use allocations to narrow down the

location of reference-less memory. While not directly related to

crash-resistance, this method also provides a kind of memory

oracle, but it does not rely on any fault handling. However

it requires the availability of the kernel feature overcommit,

which is the ability to allocate more virtual memory than is

available as physical memory. We did not locate an allocation

oracle as it is completely different to the primitives we targeted.

B. Differences between results on Linux and Windows

On Linux we were able to directly target syscalls and their

crash-resistant nature. On Windows, certain system APIs also

provide a similar behavior, but as the Windows API often

contains more levels of abstraction, not all invalid arguments

are passed to the system calls and, instead, result in an exception

in the user-level code. However, we were still able to locate

such APIs on Windows.

Besides relying on system-level functionality, a user program

can also use exception handling to detect and resolve potential

memory errors. Our results show that filtering prior to handling

an exception can be effective in limiting the danger of a specific

exception handler. Even applications that heavily use exception

handling do not necessarily contain a memory oracle, if the

proper filtering is performed. However we also located multiple

examples of catch-all filters or filters with broad filtering criteria.

Some of these were combined with memory dereferences

outside of the protected code area, which usually indicates

a handler which should not cover access violations, but does

so anyway due to too broad filtering. Another observation

is that exception handling is much more common in client

applications on Windows than it is in servers for Linux. This

can be explained by the differences in the way memory faults

are reported on these systems. Linux uses the signal model,

requiring a global signal handler to catch the corresponding

signal [4], whereas Windows allows the usage of SEH, which

provides a comfortable way to protect specific code blocks.

C. Potential countermeasures

Depending on the system and application different coun-

termeasures are possible. We outline some possible defenses

ranging from a system redesign to ad-hoc fixes in either the

application or the system itself.

System design changes Completely eliminating memory

oracles would most likely require fundamental changes to

both programs and the underlying operating systems. Most

of these countermeasures intentionally reduce the feature set

provided to user space programs and therefore the balance

between loss of functionality and gain of security must be

considered. Given a mechanism to either recover from access

violations or querying the state of memory addresses (either

directly or indirectly), an attacker can construct crash-resistant

primitives and bypass information hiding defenses. As such,

we propose the following properties:

• any access violation is critical for the application and

yields to termination

• exception handling can only be used for program-level

exceptions (e.g., C++ exceptions), not system-level (e.g.,

access violations)

• error reporting and data collection is possible, but care

must be taken to not allow resuming the normal execution

• system APIs and system calls must terminate the offending

application on a memory error, as if the application

received the fault
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• exception masking must not be possible, any fault no

matter the callstack terminates the process

• facilities to infer the memory layout, e.g., information in

/proc or VirtualQuery, are questionable and should be

removed to prevent probing using them

• allocation functions that allow specifying the desired

address should be removed

• the memory layout of restarting processes must not persist

between restarts

Improving exception filtering A less general approach would

be to narrow the exceptions caught by specific exception

handlers. This usually means that the exception filters must not

accept more than the minimal needed set of exception codes.

While some handlers might need to catch access violations,

their widespread use is questionable. In addition to hardening

the exception handling in applications the system level oracles

need to be covered as well. This could, for example, be achieved

by treating a memory error within the system API or system

call the same as any error in the application. This means

instead of either silently discarding the exception or catching it

and setting the appropriate error state, but allowing execution

to continue, the application would need to explicitly employ

exception handling around these functions. This results in less

possibilities for an attacker to abuse such functionality, if the

application can ensure no invalid pointer is passed to this API

during normal operation.

Restricting access violations Another, more compatible, ap-

proach concerning memory probing itself is to only allow

handling and resuming of expected access violations. There are

two common reasons for a memory access to fail: (i) there is

no mapped memory at the given address or (ii) the permissions

of the memory do not allow the intended access. The first

case almost always results from a wrong calculation, or in our

case an exploit attempt, so it should be considered abnormal

behavior. The application tried to access memory that it has

not previously allocated and it also was not allocated by

the operating system for the process, so there should be no

references to this memory region. This is different compared

to the second case where the address itself is valid—there is

allocated memory at the specified location, but its permissions

do not match the requested access.

Generating a fault based on permissions can be intended, it

can be used for performance reasons as seen in Firefox [22],

so the application explicitly allocates a region of memory,

but marks it as inaccessible. In a way the program expects
an access violation to occur under some previously known
circumstances. As such it can be viable to only allow access

violations that occur at mapped memory to be handled. This is

similar to the method described by Gawlik et al. in regards to

removing the scanning primitive from Firefox, but we propose

to employ this policy at the system level. This means any

memory access to an unmapped page causes an unrecoverable

error, without invoking any exception handler in the faulting

process. This can be simulated by the application itself by

performing checks on the supplied exception information and

terminating in the case of an unmapped access. Using this

approach would still allow optimizations as used in Firefox,

but scanning attempts would be detected at the first unmapped

region encountered. While not providing as much security as a

hard policy concerning memory errors, it reduces the odds of

successful guessing significantly. This results in information

hiding providing the same security guarantees as in the absence

of crash resistance.

Rate based detection An orthogonal defense is a simple

anomaly detection that analyzes the number of access violations.

In principle, this is similar to the detection of crashes for

server applications to detect a BROP attack [29]. With some

applications using expected access violations for performance

optimizations, we wanted to establish a baseline of how many

such faults are generated during normal usage in practice. A

well known instance of this design choice can be found in

the Firefox web browser, so we used this program to test

our theory. We added logging code to report any fault caught

and handled in the browser. Using this modified version, we

crawled the top 40,000 websites according to Alexa [1] and

logged any occurrence. Our tests showed that none of these

websites exhibited an access violation when accessing the site.

Additionally, we tested the corner case of using asm.js-

heavy websites in the form of a dedicated asm.js bench-

mark [3]. This tool represents a stress test as it always forces

native code to be generated and applies some optimizations,

one of them being the usage of faults to catch out-of-bound

accesses. While we observed access violations, they are far

less frequent than during a probing attack similar to the one

described by Gawlik et. al. [22] with multiple thousands per

second. The benchmark triggered faults in groups of up to 20

in short succession, but the overall rate was much lower as

there were breaks between the groups. Even if we interpret the

peak rate as our baseline, the faults caused by actual scanning

attempts are several orders of magnitude more frequent.

As such, we conclude that the rate of access violations can

provide a viable heuristic for a defense. Even if an attacker

tries to circumvent detection by performing a far slower scan,

she will be slowed to a level where the duration will most

likely be too high to be practical.

VIII. CONCLUSION

In this paper, we showed that crash-resistant primitives are

not unique oddities. Most importantly, we demonstrated that

memory oracles exhibit specific properties that can be used

to locate them in real-world applications. We showed that it

is possible to develop tools that ease the discovery of those

code locations even for complex, closed-source programs. Once

located, these primitives can be used by an attacker in the same

way as demonstrated by previous work [22]. In addition, our

results show that not only client programs are threatened by

crash resistance: even servers can exhibit not only crash-tolerant

behavior (as demonstrated before), but such applications are

also susceptible to this new kind of vulnerabilities. Overall,

our results demonstrate that locating a crash-resistant primitive
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is no longer left to pure chance, but poses a threat for defenses

that rely on information hiding in any kind of application.
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